Zinc-67 NMR study of tetrahedral and octahedral zinc sites with symmetrical oxygen, nitrogen, and sulfur ligands

Simon Sham and Gang Wu

Abstract: We report a 67Zn nuclear magnetic resonance (NMR) study of compounds containing zinc ions coordinated by oxygen, nitrogen, and sulfur ligands. New information concerning 67Zn nuclear quadrupole coupling constants (NQCC) and chemical shift was obtained from magic-angle spinning (MAS) spectra of solid compounds containing both natural abundance and enriched 67Zn isotopes. Rapid ligand exchange processes of $[\text{Zn(thiourea)}_4]^{2+}$ in aqueous solutions were also observed.

Key words: 67Zn NMR, nuclear quadrupolar coupling constant, ligand exchange.

Résumé : On a mesuré les spectres de résonance magnétique nucléaire (RMN) du 67Zn de composés contenant des ions zinc coordinés à des ligands oxygénés, azotés et sulfurés. Grâce aux spectres obtenus par la technique de rotation à l’angle technique (magique) de composés solides contenant du 67Zn en abondance naturelle ou enrichi, on a obtenu de nouvelles informations relatives aux constantes de couplage quadrupolaire nucléaire (CCQN) et les déplacements chimiques du 67Zn. On a aussi observé des processus d’échange rapide de ligand pour le $[\text{Zn(thiourée)}_4]^{2+}$.

Mots clés : RMN du 67Zn, constante de couplage quadrupolaire nucléaire, échange de ligands.

Introduction

Zinc is among the most important metal elements in biology and is an integral constituent of a large number of enzymes (1, 2). To study the catalytic or structural role of zinc ions in these enzymes, it is important to have a means of probing the nature of the zinc binding site. In the absence of X-ray crystallographic data, direct detection of diamagnetic 65,66Zn$^{2+}$ ions in biological systems is difficult because of the lack of a suitable spectroscopic probe. From an NMR perspective, 67Zn (the only NMR-active zinc isotope) is among a number of potentially important but insensitive metal nuclei such as 43Ca and 25Mg. The insensitivity of 67Zn NMR arises from the fact that 67Zn is a quadrupolar nucleus (spin $5/2$, $Q = 0.15 \times 10^{-28}$ m2) with low natural abundance (4.11%) and a small magnetogyric ratio ($\gamma = 1.6768 \times 10^7$ rad T$^{-1}$ s$^{-1}$). Consequently, 67Zn NMR experiments are remarkably difficult. In addition to the low intrinsic sensitivity, solution state 67Zn NMR is further hampered by the fact that molecular tumbling motion always induces efficient 67Zn quadrupole relaxation, resulting in short life times of Zeeman energy levels, which lead to broad NMR lines. To date, 67Zn NMR of liquid samples has been limited to studies of either highly symmetric species or unsymmetrical complexes undergoing rapid exchange with large excessive $[\text{Zn(H}_2\text{O)}_6]^{2+}$ (3–6). Despite the biological relevance of zinc ions, the aforementioned practical difficulties have made 67Zn NMR a nearly forgotten area. In the past, NMR studies of the metal binding sites in zinc-containing proteins have essentially relied on the utility of a surrogate nuclear probe, 113Cd (7).

Solid-state NMR represents a useful approach to obtaining high-resolution NMR spectra for quadrupolar nuclei. In many aspects, it is more advantageous to study quadrupolar nuclei in the solid state than in solution. Since molecular motion is largely restricted in solids, quadrupole relaxation is not as efficient as in solution. As a result, the intrinsic resolution of solid-state NMR spectra is not limited by the lifetime of the quadrupole energy levels. However, solid-state 67Zn NMR studies are still rare. Two solid-state 67Zn NMR studies have appeared in the literature (8, 9); but the compounds under study are of cubic symmetry, so the electric field gradient (EFG) at the zinc site vanishes. The 67Zn NMR study of $\text{Zn(CH}_3\text{COO)}_2\cdot2\text{H}_2\text{O}$ by Oldfield and co-workers (10) is the first report dealing with a noncubic zinc compound in the solid state. Later, Bastow and Stuart (11) obtained 67Zn NMR spectra of both single-crystal and powdered ZnO samples. Recently, we reported some preliminary results of a natural abundance 67Zn NMR study of zinc compounds with both tetrahedrally and octahedrally coordinated...
oxygen ligands (12). Here we extend our solid-state 67Zn NMR study to compounds where the zinc center is coordinated by either nitrogen or sulfur ligands. To the best of our knowledge, 67Zn nuclear quadrupole coupling constants (NQCC) have not been determined for any noncubic zinc center coordinated by nitrogen and sulfur ligands.

Experimental section

All solid-state NMR spectra were obtained on a Bruker Avance-400 NMR spectrometer operating at 25.036 MHz for 67Zn nuclei. Solution NMR spectra were obtained on Bruker Avance-500 and Avance-400 spectrometers. All 67Zn chemical shifts were referenced to an external sample of 1.0 M Zn(NO$_3$)$_2$ aqueous solution ($\delta_{\text{iso}} = 0$ ppm). Magic-angle spinning (MAS) 67Zn NMR experiments were performed using a probe purchased from Doty Scientific Inc. (Columbia, S.C.). Powder samples were packed into zirconium oxide rotors (5 mm o.d.). Typical sample spinning speeds were between 7 and 9 kHz. A pulse width of 5 μs was used, and the recycle time was between 1 and 10 s. Samples of ZnSe and Zn(CH$_3$COO)$_2$·2H$_2$O were obtained from commercial sources and used without further purification. Anhydrous Zn(CH$_3$COO)$_2$ was obtained by heating the corresponding hydrate sample in oven for 2 days at 80°C. ZnO (88% 67Zn-enriched) was purchased from Trace Science International (Toronto, Ont.). Crystals of 67Zn(ClO$_4$)$_2$·6H$_2$O were formed by dissolving 25 mg of 67ZnO in 3.6 mL of 0.25 M HClO$_4$. A solid sample of tetrakis(imidazole)zinc(II) perchlorate, Zn[ImH$_4$(ClO$_4$)$_2$] (ImH = imidazole), was then obtained by slow evaporation of the solvent. For concentration-sensitive NMR studies, the 67Zn NMR signal from a stationary ZnSe sample. Close inspection of the spectrum presented in Fig. 1(a) showed no indication of any indirect spin–spin coupling (J) between 67Zn and 77Se (spin 1/2, natural abundance $= 7.58\%$) nuclei, suggesting that $J^{(67}\text{Zn},^{77}\text{Se})$ must be smaller than the observed line width.

The isotropic 67Zn chemical shift observed for solid 67ZnClO$_4$·6H$_2$O is –3 ppm, which suggests a similar zinc environment in both solid and solution state. The crystal structure of ZnClO$_4$·6H$_2$O at room temperature (space group $P6_3/mc$) reveals that the zinc ion is coordinated by six water molecules with a nearly perfect octahedral environment in both solid and solution state. The Zn—O distances are 2.123 and 2.152 Å. The O-Zn-O angles found to be 245 ppm, which is similar to that found for ZnO (11, 12) where the zinc atom is tetrahedrally bonded to four oxygen atoms. No solution 67Zn NMR data are available in the literature for zinc centers coordinated to four oxygen ligands. The crystal structure of Zn(CH$_3$COO)$_2$ (space group $Fdd2$) indicates that the zinc ion is in a slightly distorted tetrahedral environment (16). The Zn—O bond lengths vary from 1.914 to 1.955 Å, and the O-Zn-O angle ranges from

Figure 1 shows 67Zn MAS spectra of (a) natural abundance ZnSe (number of scans, 360; recycle delay, 1 s; spinning rate, 5.0 kHz) and (b) 67Zn-enriched ZnClO$_4$·6H$_2$O (number of scans, 128; recycle delay, 10 s; spinning rate, 6.0 kHz). Spinning sidebands are marked as “ssb.”
Fig. 2. Experimental (solid lines) and calculated (broken lines) ^{67}Zn MAS spectra of (a) natural abundance Zn(CH$_3$COO)$_2$, (number of scans, 32 225; spinning rate, 8.5 kHz; recycle delay, 1 s), (b) ^{67}Zn-enriched Zn(imidazole)$_4$(ClO$_4$)$_2$ (number of scans, 16 774; recycle time, 1 s; spinning rate, 8.1 kHz), and (c) ^{67}Zn-enriched Zn(thiourea)$_4$(NO$_3$)$_2$ (number of scans, 19 188, recycle time, 2 s; spinning rate, 9.1 kHz).

102.2° to 115.9°. Analysis of the MAS line shape shown in Fig. 2(a) yields $\epsilon^2 Q/\hbar = 2.42$ MHz and $\eta = 0.1$.

To explore the sensitivity enhancement by isotopic enrichment, we prepared two ^{67}Zn-enriched compounds: $^{67}\text{Zn}[\text{ImH}]_4(\text{ClO}_4)_2$ and $^{67}\text{Zn}[\text{SC(NH}_2)_2](\text{NO}_3)_2$. The enrichment level is about 88% for both compounds. Figures 2(b) and (c) show the ^{67}Zn MAS spectra of the two ^{67}Zn-labeled compounds. For $^{67}\text{Zn}(\text{ImH})_4(\text{ClO}_4)_2$, the isotropic ^{67}Zn chemical shift is 291 ppm, which is in agreement with those reported for zinc sites coordinated by four sulfur atoms from the thiourea ligands (18). The two Zn—S distances are 2.324 and 2.361 Å, which are considerably longer than the Zn—N distances in the zinc–imidazole complex. The S-Zn-S angle between the two longer Zn—S bonds is 100.5°, and the angle between the two shorter Zn—S bonds is 121.5°, both of which deviate considerably from the perfect tetrahedral angle. It is also noted that the ^{67}Zn EFG tensors in $^{67}\text{Zn}(\text{ImH})_4(\text{ClO}_4)_2$ and $^{67}\text{Zn}[\text{SC(NH}_2)_2](\text{NO}_3)_2$ exhibit very different asymmetry parameters. This observation is somewhat surprising, since the two compounds have a similar tetrahedral arrangement at the zinc center.

Compared with the ^{67}Zn MAS spectrum of natural abundance Zn(CH$_3$COO)$_2$, as shown in Fig. 2(a), the overall sensitivity enhancement in the ^{67}Zn MAS spectra of the two ^{67}Zn-enriched compounds does not appear as dramatic as expected from the enrichment level, i.e., a factor of 20. Although solution ^{67}Zn NMR did prove that the ^{67}Zn enrichment procedure was successful, several other factors may contribute to the apparent lack of full signal enhancement in the ^{67}Zn spectra of $^{67}\text{Zn}[\text{ImH}]_4(\text{ClO}_4)_2$ and $^{67}\text{Zn}[\text{SC(NH}_2)_2](\text{NO}_3)_2$. First, the molecular size of Zn(ImH)$_4$(ClO$_4$)$_2$ (FW = 536) and Zn[SC(NH$_2$)$_2$](NO$_3$)$_2$ (FW = 493) is larger than that of Zn(CH$_3$COO)$_2$ (FW = 183). Second, in the case of $^{67}\text{Zn}(\text{ImH})_4(\text{ClO}_4)_2$, a small sample of the enriched compound (ca. 50 mg) was used, which is much less than ca. 150 mg used for the natural abundance Zn(CH$_3$COO)$_2$ sample. Third, the ^{67}Zn spin-lattice relaxation time (T_1) is much longer in $^{67}\text{Zn}(\text{ImH})_4(\text{ClO}_4)_2$ and $^{67}\text{Zn}[\text{SC(NH}_2)_2](\text{NO}_3)_2$ than in Zn(CH$_3$COO)$_2$. By performing ^{67}Zn MAS experiments with different recycle delays, we were able to provide an estimate for ^{67}Zn T_1 in $^{67}\text{Zn}[\text{SC(NH}_2)_2](\text{NO}_3)_2$. $T_1 = 2$ s. In Zn(CH$_3$COO)$_2$, however, the T_1 was estimated to be less than 0.5 s (12). After considering all these factors, the sensitivity enhancement in Figs. 2(b) and (c) seems reasonable. It is worth pointing out that our attempts to record ^{67}Zn MAS spectra for natural abundance samples of Zn(ImH)$_4$(ClO$_4$)$_2$ and Zn[SC(NH$_2$)$_2$](NO$_3$)$_2$ were unsuccessful, presumably due to the long T_1 values.

Similar to the case of the zinc imidazole complex, we also observed rapid ligand exchange in the aqueous solution of Zn[SC(NH$_2$)$_2$](NO$_3$)$_2$. Figure 3 shows the result of the concentration study to examine the rapid ligand exchange process in Zn[SC(NH$_2$)$_2$](NO$_3$)$_2$. When the concentration of thiourea is low, the ^{67}Zn chemical shift is close to 0 ppm, in-
indicating the existence of [Zn(H$_2$O)$_6$]$^{2+}$ species. As the concentration of the thiourea ligand is increased, the 67Zn NMR signal is shifted toward higher frequencies. At the highest metal–ligand ratio used in this study, thiourea conc./[Zn$^{2+}$] ≈ 9, the 67Zn chemical shift of 355 ppm for the solution sample is practically identical to that observed in the solid state, 359 ppm.

To examine possible trends in solid-state 67Zn NMR parameters, we summarize in Table 1 the presently available data in the literature for zinc compounds. It is noted that the 67Zn NQCC has also been determined in zinc metal, $e^2qQ/\hbar = 11.983$ MHz (19–21); however, it is reasonable not to compare this value with those obtained for zinc compounds. With this exception, the largest 67Zn NQCC found in zinc compounds is that in Zn(CH$_3$COO)$_2$·2H$_2$O, $e^2qQ/\hbar = 5.3$ MHz (10). The crystal structure of Zn(CH$_3$COO)$_2$·2H$_2$O (22) indicates that the zinc ion is coordinated by six oxygen atoms in a very distorted octahedral environment. Four of the six oxygen atoms are from the acetate groups. The other two oxygen atoms are those from the water molecules. Whereas, the Zn—O bond length varies slightly from 2.14 to 2.18 Å, a significant distortion from perfect Oh symmetry exists in the O-Zn-O bond angles. For example, large distortions are found when the two mutually trans oxygen atoms are due to the acetate and water, respectively, i.e., O(Ac)-Zn-O(W) = 152°, or when the two cis oxygen atoms are from the same acetate group, O(Ac)-Zn-O(Ac) = 61°. The distortion is, however, smaller when the two cis oxygen atoms arise from the acetate and water, respectively, i.e., O(Ac)-Zn-O(W) = 108°. To study the possible correlation between 67Zn NQCC and molecular structure, we have used a parameter called the mean deviation of bond angles as a measure of the degree of deviation of the zinc site of interest from a perfect symmetry, T_d or O_h.

\[\Delta(T_d) = \frac{1}{4} \sum_i |\theta_i - 109.5^\circ| \]

where θ_i is the ith bond angle across the zinc center. In a similar fashion, one can define a mean deviation of bond angles for an octahedral site using 90° and 180° as perfect angles. In Fig. 4, 67Zn NQCC is plotted against the mean deviation of bond angles as defined in eq. [1] for presently available 67Zn NMR data. As seen in Fig. 4, the octahedral

<table>
<thead>
<tr>
<th>Compound</th>
<th>Zinc coordination</th>
<th>δ_{iso} (ppm)</th>
<th>e^2qQ/\hbar (MHz)</th>
<th>η</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZnO (hexagonal)</td>
<td>ZnO$_4^-$</td>
<td>240.1</td>
<td>2.407</td>
<td>0.0</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>240</td>
<td>2.40</td>
<td>0.0</td>
<td>12</td>
</tr>
<tr>
<td>ZnS (cubic)</td>
<td>ZnS$_4$</td>
<td>378</td>
<td>0</td>
<td>—</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>380.5</td>
<td>0</td>
<td>—</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>381.9</td>
<td>0</td>
<td>—</td>
<td>12</td>
</tr>
<tr>
<td>ZnS (hexagonal)</td>
<td>ZnS$_4$</td>
<td>365</td>
<td>$<$0.5</td>
<td>0</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>364.5</td>
<td>$<$0.4</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>ZnSe (cubic)</td>
<td>ZnSe$_4$</td>
<td>273</td>
<td>—</td>
<td>—</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>276</td>
<td>—</td>
<td>—</td>
<td>This work</td>
</tr>
<tr>
<td>ZnTe (cubic)</td>
<td>ZnTe$_4$</td>
<td>85</td>
<td>—</td>
<td>—</td>
<td>8</td>
</tr>
<tr>
<td>K$_2$Zn(CN)$_4$ (cubic)</td>
<td>ZnC$_4$</td>
<td>291</td>
<td>0</td>
<td>—</td>
<td>9</td>
</tr>
<tr>
<td>Zn(CH$_3$COO)$_2$·2H$_2$O</td>
<td>ZnO$_6$</td>
<td>10</td>
<td>5.3</td>
<td>0.85</td>
<td>10</td>
</tr>
<tr>
<td>ZnSO$_4$·7H$_2$O</td>
<td>ZnO$_6$</td>
<td>245</td>
<td>2.42</td>
<td>0.1</td>
<td>This work</td>
</tr>
<tr>
<td>Zn(CH$_3$COO)$_2$</td>
<td>ZnO$_4$</td>
<td>291</td>
<td>2.80</td>
<td>0.4</td>
<td>This work</td>
</tr>
<tr>
<td>Zn(imidazole)$_4$(ClO$_4$)$_2$</td>
<td>ZnN$_4$</td>
<td>359</td>
<td>3.15</td>
<td>1.0</td>
<td>This work</td>
</tr>
<tr>
<td>Zn(thiourea)$_4$(NO$_3$)$_2$</td>
<td>ZnS$_4$</td>
<td>359</td>
<td>3.15</td>
<td>1.0</td>
<td>This work</td>
</tr>
<tr>
<td>Zn(ClO$_4$)$_2$·6H$_2$O</td>
<td>ZnO$_6$</td>
<td>$-$3.0</td>
<td>$<$0.2</td>
<td>—</td>
<td>This work</td>
</tr>
</tbody>
</table>
After the submission of this manuscript, two solid-state 67Zn NMR studies have appeared in the literature (26, 27).

...in the literature (26, 27).

...in this study, the zinc ions are coordinated to six oxygen atoms with similar bond lengths, 2.09 ± 0.10 Å. Thus, it is perhaps not surprising that a reasonable correlation is observed among octahedral compounds. However, the Zn—ligand distance for the tetrahedral compounds varies from 1.914 to 2.000 to 2.361 Å for Zn—O (acetate), Zn—S (thiourea), and Zn—N (imidazole), respectively. This discrepancy may be responsible for the lack of correlation between 67Zn NMR parameters and molecular structure among tetrahedral compounds. Nevertheless, more investigations are definitely required before one can draw any conclusion about the correlation between 67Zn NMR parameters and molecular structure.

Based on the presently available solid-state 67Zn NMR data, it seems that the value of 5.3 MHz found in Zn(CH$_3$COO)$_2$·2H$_2$O may represent an upper limit of the 67Zn NQCC for zinc ions coordinated octahedrally by symmetrical ligands but a lower limit for octahedral coordination with unsymmetrical ligands. The zinc binding geometry in the zinc insulin complex belongs to the latter case, since each of the two zinc sites in the two-zinc insulin hexamer is coordinated by three imidazolyl nitrogen atoms and three water oxygen atoms (24). In light of the new solid-state 67Zn NMR data, it appears that the value of 1.86 MHz suggested for the 67Zn NQCC in insulin by Shimizu and Hatano (25) may be grossly underestimated.

Conclusions

In this study, we have focused on the solid-state 67Zn NMR spectra of tetrahedral and octahedral zinc centers that are symmetrically coordinated by water, acetate, imidazole, and thiourea ligands. It is well known that the active zinc sites in metalloproteins usually contain unsymmetrical ligands. Therefore, it would be desirable, although technically challenging, to extend these solid-state 67Zn NMR studies to some model compounds where the zinc center resembles those in zinc-containing proteins. Unfortunately, to this date, our efforts in recording solid-state 67Zn NMR signals for unsymmetrical zinc sites have been unsuccessful, presumably due to the large quadrupole coupling constants associated with those sites. It should be noted that the solid-state 67Zn NMR results reported in this study were obtained at a relatively low magnetic field, 9.4 T. Since the second-order quadrupolar broadening is inversely proportional to the applied magnetic field strength, the availability of very high-field instrument (18.8 T or greater) holds the promise of making unsymmetrical coordination zinc sites accessible. 2

Acknowledgments

This research was supported by research and equipment grants from the Natural Sciences and Engineering Research Council of Canada (NSERC).

References

2 After the submission of this manuscript, two solid-state 67Zn NMR studies have appeared in the literature (26, 27).