Solid-state 23Na NMR determination of the number and coordination of sodium cations bound to Oxytricha nova telomere repeat d(G$_4$T$_4$G$_4$)

Gang Wu*, Alan Wong

Department of Chemistry, Queen's University, Kingston, Ont., Canada K7L 3N6

Received 29 July 2004
Available online 17 September 2004

Abstract

We report a solid-state 23Na NMR study of the bound sodium cations in a G-quadruplex formed by Oxytricha nova telomere DNA repeat, d(G$_4$T$_4$G$_4$) (Oxy-1.5). Using a 2D multiple-quantum magic-angle spinning 23Na NMR method, we observed three sodium cations residing inside the quadruplex channel of the Na$^+$ form of Oxy-1.5. Each of these sodium cations is sandwiched between two G-quartets. We found no evidence for sodium cations in the T$_4$ loop region. For comparison, solid-state 15N MAS NMR spectra were also obtained for the 15NH$_4^+$ form of Oxy-1.5. The insufficient resolution in the 15N MAS NMR spectra did not permit determination of the number of NH$_4^+$ ions inside the quadruplex channel. The solid-state 23Na and 15N NMR spectra for Oxy-1.5 were also compared with those obtained for guanosine 5'-monophosphate.

Keywords: Alkali metal; Cation binding; G-quartet; Solid-state NMR; Telomeric DNA

The importance of alkali metal cations in formation, stability, and function of G-quadruplex structures has been well documented in the literature [1–8]. Structural details regarding the mode of cation binding in G-quadruplexes have been reported in recent years [9–17]. In addition to the crystallographic approach, two NMR studies have demonstrated that 15NH$_4^+$ (spin –1/2) and 205TI$^+$ (spin –1/2) ions can be used as surrogate probes for studying alkali metal cation binding to G-quadruplex in solution [18,19]. While direct studying of alkali metal cations by conventional liquid-state NMR is hampered by the lack of site-specific information on spectra, solid-state NMR has emerged as a new technique complementary to crystallography for direct detection of alkali metal cations [20]. Rovnyak et al. [21] reported the first solid-state 23Na (spin –3/2) NMR study for G-rich oligonucleotides. We have subsequently established the solid-state 23Na and 39K (spin –3/2) NMR signatures for Na$^+$ and K$^+$ ions bound to a G-quadruplex [22–25]. Here, we use this novel solid-state 23Na NMR approach to determine the exact number and coordination geometry of bound Na$^+$ ions in a G-quadruplex formed by Oxytricha nova telomere DNA repeat, d(G$_4$T$_4$G$_4$) (Oxy-1.5).

Oxy-1.5 is perhaps one of the most studied telomeric oligonucleotides. In solution, the Na$^+$ form of Oxy-1.5 adopts a symmetric foldback quadruplex structure consisting of four stacked G-quartets and two diagonal thymine loops [26]. The crystal structure of the K$^+$ form of Oxy-1.5 showed that the overall structure of Oxy-1.5 in the solid state is identical to that found in solution [12]. Feigon and co-workers also examined the structural details between various forms of Oxy-1.5 in solution and concluded that the nature of monovalent cations present in the solution (Na$^+$, K$^+$, and NH$_4^+$) does not affect the overall fold of Oxy-1.5 [27]. However, there is strong evidence suggesting that the details of cation binding in Oxy-1.5 may be different, depending on the type of cations present. For example, five K$^+$ ions were found in the K$^+$ form of Oxy-1.5 [12], whereas only three NH$_4^+$
ions were observed in the NH$_4^+$ form [18]. Because the crystal structure for the Na$^+$ form of Oxy-1.5 has not been reported, the question regarding the mode of Na$^+$ binding in Oxy-1.5 has remained unanswered until now.

Materials and methods

Sample preparation. Hydrated sodium salt of guanosine 5'-monophosphate (5'-GMP), sodium chloride, and cesium chloride were purchased from Sigma-Aldrich (Ont., Canada). 15NH$_4$Cl (99% 15N atom) was purchased from Cambridge Isotope Laboratories (Andover, MA). DNA oligonucleotide d(G$_4$T$_4$G$_4$) (Oxy-1.5) was synthesized by Cortec DNA Service Laboratories (Kingston, Ont., Canada). The oligonucleotide was synthesized on a 12-channel oligonucleotide synthesizer (Northwest Engineering) using standard CE phosphoramidite chemistry. The oligonucleotide was cleaved from the CPG support and protecting groups were removed using a 50/50 mixture of ammonium hydroxide and methylamine (AMA) for 5 h at room temperature. Prime pure oligonucleotide purification cartridges were used to purify the oligonucleotide according to the manufacturer's protocol.

A sample of the Na$^+$ form of Oxy-1.5 was prepared by dissolving 5.638 mg d(G$_4$T$_4$G$_4$) in 1 mL of deionized water and was extensively dialyzed against NaCl(aq) in the following sequence of concentrations, 500, 250, 20, and 1 mM. The solution was then dialyzed against a mixture of NaCl(aq) (1 mM) and CsCl(aq) (40 mM) prior to drying in order to suppress the amount of free Na$^+$ cations. The DNA oligonucleotide was then lyophilized. A sample of Oxy-1.5 in the 15NH$_4^+$ form was prepared by dialyzing d(G$_4$T$_4$G$_4$) against a series of 15NH$_4$Cl(aq) solutions, 100, 50, 25, and 15 mM, and finally against a mixture of 15NH$_4$Cl(aq) (3.7 mM) and CsCl(aq) (37 mM). Cellulose dialysis membranes with molecular weight cut-off of 1000 kDa (Sigma–Aldrich) were used in all dialysis experiments.

Two 5'-GMP samples were also prepared for solid-state NMR experiments. The first sample was prepared by dissolving 320 mg Na$_5$(5'-GMP)·7H$_2$O with 1.7 mL of 4.0 M NaCl(aq). The solution (pH 8.0) was then stirred for 10–15 min under gentle heating to ensure that all substances were dissolved. Gelation occurred upon cooling of the warm solution to room temperature. The white gel-like materials were then gently washed with 2-methylpentane-2,4-diol aqueous solution (MPD) (40% v/v) to reduce the amount of free salts. This sample was denoted as the Na$^+$ form of 5'-GMP. The second 5'-GMP gel samples were prepared in a similar fashion, except that 15NH$_4$Cl(aq) was used rather than NaCl(aq). This second sample was denoted as the NH$_4^+$ form of 5'-GMP.

Solid-state NMR. Solid-state NMR spectra were recorded at 11.75 T on a Bruker Avance-500 spectrometer operating at 132.26, 50.57, and 500.13 MHz for 23Na, 15N, and 1H nuclei, respectively. The radio-frequency (RF) field strength at the 23Na frequency was 96 kHz. Sodium-23 chemical shifts were referenced to NaCl(aq) by setting the 23Na NMR signal of NaCl sample at $\delta^{(23)Na} = 7.21$ ppm. Solid-state 15N NMR spectra were obtained under the cross-polarization (CP) MAS condition with high power proton decoupling. Nitrogen-15 chemical shifts were referenced to liquid NH$_3$, $\delta^{(15)N} = 0$ ppm, by setting the 15N NMR signal of a solid 15NH$_4$Cl sample to $\delta^{(15)N} = 41$ ppm. For 2D 23Na MQMAS experiments [28], the z-filter MQMAS pulse sequence [29] was used: P1(\phi1)-t1–P2(\phi2)-t–P3(\phi3)-Acq(t2,\phi4), where \phi1 = (0$^\circ$); \phi2 = (0, 0, 60, 60, 120, 120, 180, 180, 240, 240, 300, and 300$^\circ$); \phi3 = (0, 180$^\circ$); \phi4 = (0, 180, 180, and 0$^\circ$), and t = 20 μs. The optimized excitation (P1) and conversion (P2) pulse widths were 4.5 and 2.0 μs, respectively. The pulse width for the selective 23Na 90$^\circ$ pulse (P3) was 18 μs. The hypercomplex data method was used for obtaining pure-phase 2D spectra. The 2D time-domain data were treated with a shear Fourier transformation (FT).

Results and discussion

Fig. 1 shows 1D solid-state 23Na NMR spectra for the Na$^+$ forms of Oxy-1.5 and 5'-GMP. The 5'-GMP sample was used as a model system, because the spectral assignment for this system has been unambiguously established [22,23]. As seen from Fig. 1, the 23Na MAS spectra for Oxy-1.5 and 5'-GMP exhibit very similar features. In particular, three groups of Na$^+$ ions can be identified in each of the spectra. The 23Na NMR signal at 7 ppm is due to excessive free NaCl salt. The signal centered at about -5 ppm arises from the Na$^+$ ions bound to the phosphodiester group in Oxy-1.5 and the phosphate group in 5'-GMP, respectively. These Na$^+$ ions are referred to as surface ions. The signal centered at approximately -20 ppm is characteristic of the Na$^+$ ions residing inside a G-quadruplex channel (referred to as channel Na$^+$ ions). Although the 23Na MAS spectrum of Oxy-1.5 shows spectral separation for Na$^+$ ions from different locations, the resolution is insufficient to allow an accurate determination of the exact number of channel Na$^+$ ions.

Fig. 2 shows 2D 23Na multiple-quantum-angle spinning (MQMAS) spectra obtained for Oxy-1.5 and 5'-GMP at 11.75 T. The most important feature in the 2D MQMAS spectrum for Oxy-1.5 is the fine spectral feature associated with the channel Na$^+$ ions (shown as an expansion in Fig. 2). In particular, the channel Na$^+$ ions give rise to two distinct NMR signals with a peak volume ratio of approximately 2:1. In the dimeric structure of d(G$_4$T$_4$G$_4$), there are four G-quartets stacking on the top of one another, giving rise to three pockets inside the quadruplex channel. The simplest
interpretation for the above 23Na NMR observation is that the signal with the twice intensity can be attributed to two Na$^+$ ions in the symmetry-related outer pockets and the less intense signal to a Na$^+$ ion in the central pocket. This situation is in analogy to the NH$^+_4$ coordination in the NH$^+_4$ form of Oxy-1.5 [18]. Analyses of the 1D and 2D spectra yield the following 23Na NMR parameters for the channel Na$^+$ sites in Oxy-1.5: outer site, $C_Q = 1.2 \pm 0.2$ MHz, $\eta_Q = 0.4 \pm 0.2$, and $\delta = -19.0 \pm 0.2$ ppm; central site, $C_Q = 0.9 \pm 0.2$ MHz, $\eta_Q = 1.0 \pm 0.2$, and $\delta = -17.5 \pm 0.2$ ppm. As seen from Table 1, these NMR parameters are comparable to those observed for the channel Na$^+$ ions found in other G-quadruplexes. On the basis of the crystal structures for [d(TG4T)]$_4$ [10] and [G1]$_{16}$ [3Na/Cs Picrate]$_4$ [21], the channel Na$^+$ ion is known to coordinate to eight car-

![Fig. 2. Two-dimensional 23Na MQMAS spectra of the Na$^+$ forms of Oxy-1.5 (upper) and 5'-GMP (lower). Spectral expansions are shown on the right. Detailed NMR experimental parameters are as follows. Oxy-1.5: 3000 transients for each t_1; recycle time, 2 s; 26 t_1 increments; sample spinning frequency, 8500 Hz, and total experimental time, 43 h. 5'-GMP: 48 transients for each t_1; recycle time, 2 s; 64 t_1 increments; sample spinning frequency, 8000 Hz, and total experimental time, 4.3 h. The spinning sidebands are marked as “SSB.”](image)

<table>
<thead>
<tr>
<th>System</th>
<th>δ_{iso} (ppm)</th>
<th>C_Q (MHz)</th>
<th>η_Q</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>[d(TG4T)]$_4$</td>
<td>-19</td>
<td>NDb</td>
<td>ND</td>
<td>[21]</td>
</tr>
<tr>
<td>5'-GMP</td>
<td>-18</td>
<td>1.1</td>
<td>1.0</td>
<td>[22]</td>
</tr>
<tr>
<td>[G1]$_{16}$ [3Na/Cs Picrate]$_4$</td>
<td></td>
<td></td>
<td></td>
<td>[23]</td>
</tr>
<tr>
<td>Site 1</td>
<td>-12.8</td>
<td>1.65</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>Site 2</td>
<td>-16.5</td>
<td>1.35</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>Site 3</td>
<td>-15.0</td>
<td>1.70</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>[d(G1T4G1)$_2$]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outer site</td>
<td>-19.0</td>
<td>1.2</td>
<td>0.4</td>
<td>This work</td>
</tr>
<tr>
<td>Inner site</td>
<td>-17.5</td>
<td>0.9</td>
<td>1.0</td>
<td></td>
</tr>
</tbody>
</table>

a G1, 5'-tert-butyl-dimethylsilyl-2',3'-O-isopropylidene guanosine.

b Not determined.
bonyl oxygen atoms (O$_6$) from two adjacent G-quartets, having a square anti-prism coordination geometry with an averaged Na–O distance of 2.81 Å.

As also seen from Fig. 2, each of the two signals for the channel Na$^+$ ions exhibits a line shape parallel to the F_2 axis, indicating that the coordination environment for the channel Na$^+$ ions is well-defined. In contrast, the 23Na NMR signal for the channel Na$^+$ ions in 5'-GMP exhibits a diffuse shape along the slope of unity. This latter spectral feature suggests that the channel Na$^+$ ions in 5'-GMP occupy a distribution of Na$^+$ sites that have essentially the same value of C_Q but slightly different chemical shifts. Similarly, the signal from the surface Na$^+$ ions in Oxy-1.5 exhibits a diffuse line shape, indicating that the chemical environment for the surface Na$^+$ ions is not homogeneous. It is also noted that the signal for the surface Na$^+$ ions in Oxy-1.5 shows more diffused features than that for 5'-GMP. This may be due to the fact that Oxy-1.5 has two different types of phosphodiester groups (stacking G-quartets and T$_4$ loops), whereas 5'-GMP has a mononucleotide.

Another important region where Na$^+$ ions may potentially occupy is at the mouth of the quadruplex channel inside the T$_4$ loop region. In the K$^+$ form of Oxy-1.5, two K$^+$ ions are located in this region, each coordinating to eight oxygen atoms (four from the O$_6$ atoms of the end G-quartet, two from the O$_2$ atoms of the loop thymine residues, and two from water molecules). For the Na$^+$ form, the only model available is that proposed by Feigon and co-workers [27] where each of the two outer Na$^+$ ions is located within the end G-quartet plane also coordinating to the O$_2$ atom from T$_7$ in a square-pyrimidal fashion. Because we have accumulated some 23Na NMR data on pentacoordinate Na$^+$ ions in mononucleotides [30], we are confident that in-plane Na$^+$ ions are not present in Oxy-1.5. Although our solid-state 23Na NMR data does not support Feigon’s model, we cannot completely discount the possibility that there may be Na$^+$ ions residing inside the T$_4$ loop whose NMR signals are overlapped with those for the surface Na$^+$ ions. At the present time, the cation binding in the Na$^+$ form of Oxy-1.5 appears to be identical to that in the NH$_4^+$ form, despite the fact that the loop conformations for these two forms are known to be different in solution [27]. A similar observation is that, although the K$^+$ and NH$_4^+$ forms of Oxy-1.5 have the same topology and loop conformation, they have different cation binding in the loop region [12,27]. It might be possible that factors other than cation binding may be responsible for the formation of different loop structures in different forms of Oxy-1.5. Since different T$_4$ loop structures are quite common between the Na$^+$ and K$^+$ forms of G-quadruplexes [31,32], further investigations are necessary to fully understand this phenomenon.

At this point, it is useful to summarize the currently available information about the mode of cation binding in various forms of Oxy-1.5. As illustrated in Fig. 3, there are two types of K$^+$ forms of Oxy-1.5 that have been determined by X-ray crystallography. One is a pure K$^+$ form where five K$^+$ ions are found to coordinate to the G-quadruplex structure: three inside the channel and two in the T$_4$ loop regions [12]. Another K$^+$ form is a Oxy-1.5/drug complex where one of the loop K$^+$ ions is replaced by a drug molecule [33]. The NH$_4^+$ form studied by liquid-state 15N NMR [27] and the Na$^+$ form by solid-state 23Na NMR in the present work have the same mode of cation binding. A very different Na$^+$ form of Oxy-1.5 was observed in a DNA–protein complex [11]. The crystal structure of the Oxy-1.5/protein complex indicates that the general folding of dimeric Oxy-1.5 structure is similar to those for other forms of Oxy-1.5. However, a significantly different feature found in the Oxy-1.5/protein complex is that the stack of four G-quartets is slightly tilted, as depicted in Fig. 3. This tilting makes it difficult for a Na$^+$ ion to interact simultaneously with eight O$_6$ atoms from the adjacent G-quartets. Consequently, all Na$^+$ ions are located essentially in the G-quartet planes. In addition to the four O$_6$ atoms from the same G-quartet, each of the two outer Na$^+$ ions is also coordinated to two O$_2$ atoms from the loop thymine residues and each of the two inner Na$^+$ ions to another O$_2$ atom from the neighboring G-quartet in a square-pyramidal arrangement. On the basis of this new mode of cation binding, we anticipate that this DNA–protein complex would exhibit a
different cation affinity compared with other forms of Oxy-1.5. It is likely that, for this DNA–protein complex, Na\(^+\) ions are preferred over K\(^+\) ions.

Because the solid-state \(^{23}\)Na data have suggested that the cation binding in the Na\(^+\) form of Oxy-1.5 is identical to that in the NH\(_4\)+ form, we decided to further investigate the NH\(_4\)+ form of Oxy-1.5 using solid-state \(^{15}\)N NMR. Although \(^{15}\)NH\(_4\)+ has been used as a surrogate probe for studying alkali metal binding, it has not been possible to date to examine the same molecular system in the same physical state using \(^{15}\)N and alkali metal NMR methods simultaneously. Fig. 4 shows the solid-state \(^{15}\)N NMR spectra for Oxy-1.5 and 5'-GMP. Similar to the situation in \(^{23}\)Na NMR, three groups of \(^{15}\)NH\(_4\)+ ions can be identified in the \(^{15}\)N NMR spectra. The \(^{15}\)N chemical shift observed for the channel NH\(_4\)+ ions is in agreement with the solution \(^{15}\)N NMR data [18]. Unfortunately, the spectral resolution in the solid-state \(^{15}\)N spectra is insufficient to allow a determination of the number of NH\(_4\)+ ions inside the quadruplex channel. Here, Oxy-1.5 represents an unusual example where the NMR spectral resolution is actually higher in \(^{23}\)Na spectra than in \(^{15}\)N spectra for the same molecular system.

In summary, we have used a solid-state \(^{23}\)Na NMR approach to determine the exact number and coordination geometry of the Na\(^+\) ions bound to Oxy-1.5. Our results suggest that three Na\(^+\) ions are located inside the G-quadruplex channel and that no Na\(^+\) ions are found in the thymine loop regions. This situation is identical to that observed in the NH\(_4\)+ form of Oxy-1.5, but different from the K\(^+\) form. This study illustrates that the \(^{23}\)Na NMR signal from a single Na\(^+\) ion in a G-quadruplex of ca. 8 kDa molecular weight can be detected with confidence at a moderate magnetic field strength, 11.75 T. The very high spectral resolution (less than 1 ppm) observed in the \(^{23}\)Na MQMAS spectra of Oxy-1.5 strongly suggests that solid-state \(^{23}\)Na NMR holds great promise to become a practical technique for obtaining detailed information about Na\(^+\) coordination sites. We are currently applying solid-state \(^{23}\)Na NMR to even larger biomolecular systems.

Acknowledgments

This work was supported by research grants from the Natural Sciences and Engineering Research Council (NSERC) of Canada, Queen’s University, and the Province of Ontario.

References

