1. Introduction

Oxygen is one of the most common elements found in organic and biological molecules. Oxygen atoms are often involved in two major types of intermolecular interactions: hydrogen bonding and ion–ligand interactions. These interactions can be found in almost all biomolecular structures and play crucial roles in biological processes. Among oxygen-containing functional groups, carbonyl oxygen (C=O) is perhaps the most important one, because carbonyl oxygen atoms are ubiquitous in proteins (backbone and side chains) and nucleic acid bases. The hydrogen-bonding interaction between carbonyl oxygen atoms (C=O) and other functional groups such as N–H and O–H plays a major role in the formation and stability of high-order structures formed from these biological molecules. In addition to hydrogen bonding, metal ion–carbonyl interactions are also important in many biological structures. For example, carbonyl oxygen atoms are often involved in the catalytic sites of metalloenzymes. Another important class of proteins of biological significance is ion channel proteins. The recent crystal structure of K+ ion channel protein, KcsA,2–5 provides a remarkable example illustrating structural details about ion–carbonyl interactions and how the ion–carbonyl interaction plays a key role in ion selectivity. Traditionally, 13C and 15N NMR techniques are used to probe ion–carbonyl interactions in ion channels; however, 17O NMR should be more sensitive to ion–carbonyl interactions than 13C and 15N NMR for the following three reasons. First, the oxygen atom of a carbonyl interaction is directly involved in the ion–carbonyl interaction. Second, the chemical shift range for 17O is several times larger than that from hydrogen-bonding interactions. Our results establish a basis for using solid-state 17O NMR as a probe in the study of ion binding in G-quadruplex DNA and ion channel proteins.
than those for $^{13}$C and $^{15}$N. Third, because $^{17}$O is a quadrupolar nucleus, the quadrupole coupling tensor often provides additional information about the chemical bonding. Of course, the major challenge is to overcome the practical difficulties associated with solid-state NMR experiments for quadrupolar nuclei such as $^{17}$O compared with spin-1/2 nuclei such as $^{13}$C and $^{15}$N.

In the past several years, we and others have accumulated a considerable amount of information about the effects of hydrogen bonding on $^{17}$O NMR tensors (quadrupole coupling tensor and chemical shift tensor) in a variety of organic compounds. In comparison, much less is known about the effect of ion–carbonyl interactions on $^{17}$O NMR tensors. In a solid-state $^{17}$O NMR study for potassium hydrogen dibenzoate (PHB), we noted that, to reliably reproduce the experimental $^{17}$O NMR tensors by quantum chemical calculations, K$^{+}$–O interactions must be included in the molecular model. In a recent experimental study, Hu et al. demonstrated for the first time that high-quality $^{17}$O NMR spectra can be obtained for both powdered and oriented gramicidin A samples (57% $^{17}$O-labeled at Leu10) at a high magnetic field. More importantly, they showed that the $^{17}$O NMR signal from $^{17}$O-[3-Leu10]G uniformly aligned in DMPC bilayers is remarkably sensitive to the presence of K$^{+}$ ions, suggesting that $^{17}$O can be used as a new nuclear probe for characterizing ion–carbonyl interactions in ion channels. Subsequently, Chekmenev et al. reported an in-depth examination of the effect of ion–carbonyl interactions on the $^{17}$O NMR tensors for the carbonyl oxygen in a model peptide GlyGlyGly. They observed that both the $^{17}$O isotropic chemical shift and quadrupole coupling constant are significantly reduced when the carbonyl oxygen atom is involved in ion–carbonyl interactions with Li$^+$ and Ca$^{2+}$. These observations further establish that the remarkable sensitivity of $^{17}$O NMR tensors on ion–carbonyl interactions can potentially be used to study gating and selectivity in ion channels. Chekmenev et al. also used solid-state $^{17}$O NMR to demonstrate a reversible K$^+$ ion binding to gA pore. These recent studies appear to be the only examples in the literature to use solid-state $^{17}$O NMR for probing ion–carbonyl interactions in organic and biological molecules. Here, we report on a solid-state $^{17}$O NMR study of [6–$$^7$$O]guanosine derivatives, Scheme 1.

We chose guanosine derivatives because guanosine molecules are known to be able to form not only hydrogen-bonded molecular ribbons known as G-ribbons, but also a tetramer, known as the G-quartet, where four guanine bases are held together by eight hydrogen bonds. The most important feature of the G-quartet structure is that it is usually stabilized by ion–carbonyl interactions between O6 and a variety of metal ions (Na$^+$, K$^+$, Rb$^+$, Sr$^{2+}$, Ba$^{2+}$, Pb$^{2+}$, etc.). In the past several years, we have developed a solid-state NMR approach to directly detect alkali metal ions such as $^{25}$Na$^+$, $^{39}$K$^+$, and $^{87}$Rb$^+$ in G-quartet systems including G-quadruplex DNA.30–36 Recently, Brown and co-workers also showed that solid-state $^{17}$NMR can be used to distinguish G-ribbons from G-quartets. Clearly, guanosine derivatives are also ideal molecular systems for solid-state $^{17}$O NMR studies because the carbonyl oxygen atom O6 is at the center of action (i.e., directly involved in both hydrogen bonding and ion–carbonyl interactions). Another reason for our interest in the measurement of $^{17}$O NMR tensors in G-quartets is due to the possibility that the channel structure formed by stacking G-quartets in G-quadruplex DNA may behave like an ion channel as first suggested by Hud et al. Recent high-resolution crystal structures for both K$^+$ ion channels and G-quadruplex DNA oligomers have revealed a striking similarity in ion coordination between these two very different biomolecular systems. For example, in the selectivity filter of KcsA, each K$^+$ ion is coordinated to eight peptide carbonyl oxygen atoms in a square anti-prism fashion, whereas in the cavity of the G-quadruplex formed by d(G$_4$T$_4$G$_4$) each K$^+$ ion is also coordinated to eight carbonyl oxygen atoms in a way almost identical to that seen in KcsA. Because of these structural similarities, we anticipate that any knowledge about $^{17}$O NMR tensors in G-quartets may help establish the basis for using solid-state $^{17}$O NMR as an effective probe in the study of ion binding in both G-quadruplex DNA and ion channel proteins. Because ion–carbonyl interactions in G-quartets always coexist with hydrogen-bonding interactions, it is important to...
Scheme 2. Different Modes of Hydrogen Bonding for Guanosine Derivatives

G-ribbon A

G-ribbon B

G-quartet

examine these two interactions separately. For guanosine derivatives, several possible types of hydrogen-bonding networks exist. As illustrated in Scheme 2, guanosine molecules can form either a G-ribbon or G-quartet. For the G-ribbon structure, there are also two different arrangements: G-ribbon A and G-ribbon B. For G-ribbon A, guanosine molecules are linked by O6-H-N2 and N7-H-N1 hydrogen bonds in a zigzag fashion, whereas in G-ribbon B, two different hydrogen bonds are observed: O6-H-N1 and N3-H-N2. In G-ribbon A, molecules are related by a crystallographic 21 symmetry so that each G-ribbon has a net nonzero dipole moment. In contrast, molecules in G-ribbon A are related by a center of inversion symmetry, which results in a vanishing dipole moment for the entire G-ribbon. G-ribbon A has been observed in many crystal structures ranging from guanine monohydrate to guanosine dihydrate as confirmed by X-ray powder diffraction (XRD). In G-quartet structures, the carbonyl oxygen O6 atom is not only involved in direct hydrogen bonding, but also coordinated to metal ions, Mn+


Solid-State $^{17}$O NMR of G-Ribbon and G-Quartet

Figure 1. Powder XRD spectra obtained for (A) commercial guanosine-$2\text{H}_2\text{O}$, (B) $[6-^{17}\text{O}]$guanosine-$2\text{H}_2\text{O}$, and (C) $[6-^{17}\text{O}]$guanosine-$\text{K}^+$ gel. The peak at $d = 3.31\AA$ confirms the formation of stacking G-quartets in (C).

stirred for 3 h at room temperature until the reaction was completed as indicated by TLC analysis. The solvent was removed under reduced pressure, and the organic phase was washed with water (3 × 3 mL). The residue was suspended in 2 mL of water and lyophilized to give the residue.

Typically, a sample spinning frequency of 18 kHz was used for 1H decoupling. Typically, a sample spinning frequency of 18 kHz was used in the MAS experiment. Other experimental details are given in figure captions.

Quantum Mechanical Calculations. All quantum mechanical calculations were performed using Gaussian03 software package49 on Sun Fire 25000 servers configured with 72 × dual-core UltraSPARC-IV+1.5 GHz processors with 576 GB of RAM. SHELXTL50 was used to construct molecular cluster models. Positions of hydrogen atoms, if not reported in the crystallographic studies, were calculated using standard bond distances. All quantum chemical calculations were performed at the density functional theory (DFT) level using the hybrid B3LYP exchange functional. The principal components of the electric field gradient tensor, $q_{ii}$ ($ii = xx, yy, zz$; $|q_{xx}| > |q_{yy}|$ and $q_{yy} + q_{zz} = 0$), were computed in atomic units (1 au = 9.717365 × $10^{22}$ m$^{-2}$). The principal magnetic shielding tensor components ($\sigma_{ij}$) were computed with $\sigma_{ii} = \sigma_{11} + \sigma_{22} + \sigma_{33}$ and $\sigma_{11} > \sigma_{22} > \sigma_{33}$. In solid-state NMR experiments for quadrupolar nuclei, the measurable quantities for a quadrupole coupling tensor are quadrupole coupling constant ($C_Q$) and asymmetry parameter ($\eta_Q$). To compare calculated results with experimental NMR parameters, the following equations were used:

$$C_Q[\text{MHz}] = e^2 q_{xx} Q / h = -243.96 \times Q[\text{barn}] \times q_{zz}[\text{au}]$$ (1)

$$\eta_Q = q_{xx} - q_{zz} / q_{yy}$$ (2)

where $Q$ is the nuclear quadrupole moment, $e$ is the elementary charge, and $h$ is the Planck constant. The standard value for $Q(\text{^{17}O})$, 2.558 × 10$^{-28}$ m$^2$, was used in our study.51

The gauge including atomic orbital approach was used in chemical shielding calculations. To make a direct comparison between the calculated chemical shielding, $\sigma$, and the observed chemical shift, $\delta$, we used the new absolute $^{17}$O chemical shielding scale established by Wasylishen and Bryce.52

$$\delta (\text{ppm}) = 287.5 (\text{ppm}) - \sigma (\text{ppm})$$ (3)

In the quantum chemical calculations, we used correlation-consistent basis sets, cc-pVTZ, for all nonmetal atoms, except in the (G2)/M12+ octamers where cc-pVTZ and 6-31G(d) were used for the target O6 atom and other nonmetal atoms, respectively. For alkali metal atoms, we used triple-$\xi$ split valence basis sets of 6-31G for Na and K and the all-electron pVTZ basis set of Sadlej53 for Rb. For Sr, Ba, and Pb atoms, we used the CRENBL basis sets,54 which include a large orbital basis and a relativistic effective core potential for a small core (core electrons: Sr; 28; Ba; 46; Pb; 68). These basis sets were obtained from the Basis Set Exchange (http://gnome2.pnl.gov/bse/portal), which was developed by the Collaboratory for Multi-Scale Chemical Science in cooperation with the Environmental Molecular Sciences Laboratory (EMSL) and operated and maintained by EMSL, Pacific Northwest National Laboratory.

3. Results and Discussion

X-ray Powder Diffraction. Before we present solid-state $^{17}$O NMR data, it is necessary to confirm the nature of the guanosine samples prepared for solid-state NMR experiments. In addition, because the crystal structure of guanosine dihydrate was used to construct a model for computations of $^{17}$O NMR tensors, it was necessary to verify the crystal form of the NMR samples.

(49) Frisch, M. J.; et al. Gaussian 03, revision C.02; Gaussian, Inc.: Wallingford, CT, 2004.


Figure 2. Experimental and simulated $^{17}$O MAS NMR spectra for (A) [6-$^{17}$O]guanosine·2H$_2$O and (B) [6-$^{17}$O]guanosine/K$^+$ gel at 11.75 and 21.15 T. The following experimental parameters were used. (A) 11.75 T, 120-mg sample, 14.5 kHz spinning rate, 22 477 transients, 2-s recycle delay; 21.15 T, 50-mg sample, 18 kHz spinning rate, 5131 transients, 10-s recycle time. (B) 11.75 T, 120-mg sample, 14.5 kHz spinning rate, 36 823 transients, 1-s recycle delay; 21.15 T, 50-mg sample, 20 kHz spinning rate, 2110 transients, 1-s recycle delay.

As shown in Figure 1, the powder XRD data for [6-$^{17}$O]-guanosine confirm that the solid guanosine sample is indeed in its dihydrate form, G1·2H$_2$O. The powder XRD spectrum for the G1/K$^+$ gel sample exhibits a characteristic peak at $d = 3.31$ Å, which corresponds to the spacing between two adjacent G-quartets. This observation also confirms the formation of stacking G-quartets in the G1/K$^+$ gel sample. As discussed later, this spacing information is further used to build a model for quantum chemical calculations.

Analysis of $^{17}$O MAS Spectra. Figure 2 shows the $^{17}$O MAS spectra for G1·2H$_2$O obtained at 11.75 and 21.15 T. The observed complex spectral features immediately suggest the presence of multiple oxygen sites. The crystal structure of G1·2H$_2$O indeed indicates that there are two guanosine molecules in the asymmetric unit. 41 We were able to analyze the experimental $^{17}$O MAS spectra using a two-site model and simultaneously fit the spectra obtained at two magnetic fields with the same sets of $^{17}$O NMR parameters. The resultant $^{17}$O quadrupole parameters and isotropic $^{17}$O chemical shifts for these two sites are given in Table 1. In principle, $^{17}$O multiple-quantum magic-angle spinning (MQMAS) or double-rotation (DOR) spectra can provide independent confirmation for these spectral parameters. 6,55 Unfortunately, as we typically had small quantity (ca. 50 mg) of 10% $^{17}$O-enriched [6-$^{17}$O]guanosine samples, we did not attempt to acquire $^{17}$O MQMAS or DOR spectra for these samples. As will be discussed in detail later, we relied on the $^{17}$O NMR tensor results from quantum chemical calculations to assign the observed spectral parameters to the two crystallographically distinct sites.

Table 1. Experimental Solid-State $^{17}$O NMR Parameters Obtained from Analyses of $^{17}$O MAS Spectra at 11.75 and 21.15 T

<table>
<thead>
<tr>
<th>compound</th>
<th>$\Delta\omega$ (ppm)</th>
<th>$\tilde{G}_0$ (MHz)</th>
<th>$\eta_0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>[6-$^{17}$O]guanosine dihydrate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>molecule A</td>
<td>263</td>
<td>7.8</td>
<td>0.44</td>
</tr>
<tr>
<td>molecule B</td>
<td>250</td>
<td>7.7</td>
<td>0.55</td>
</tr>
<tr>
<td>[6-$^{17}$O]guanosine/K$^+$ gel</td>
<td>225</td>
<td>7.2</td>
<td>0.68</td>
</tr>
<tr>
<td>triacetlyl-[6-$^{17}$O]guanosine/Sr$^{2+}$ octamer</td>
<td>233</td>
<td>7.0</td>
<td>1.00</td>
</tr>
<tr>
<td>triacetlyl-[6-$^{17}$O]guanosine/Ba$^{2+}$ octamer</td>
<td>237</td>
<td>6.9</td>
<td>1.00</td>
</tr>
<tr>
<td>triacetlyl-[6-$^{17}$O]guanosine/Pb$^{2+}$ octamer</td>
<td>229</td>
<td>6.4</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Figure 2 also shows the $^{17}$O MAS spectra for the G1/K$^+$ gel. In this case, a characteristic NMR line shape arising from second-order quadrupole interaction is observed, indicating that in this system all O6 atoms are equivalent. The most important difference between the carbonyl oxygen atoms in G1·2H$_2$O and G1/K$^+$ gel is the presence of ion-carbonyl interactions in the latter system. As seen from Table 1, the isotropic $^{17}$O chemical shift observed for G1/K$^+$ gel is considerably smaller (by 25–30 ppm) than those for G1·2H$_2$O. Similarly, the ion-carbonyl interaction also causes changes in the $^{17}$O quadrupole parameters for the O6 atom. In particular, the $^{17}$O quadrupole coupling constant is reduced in G1/K$^+$ gel by 0.5 MHz, whereas the asymmetry parameter is increased from $\eta_0 = 0.44$, 0.55 in G1·2H$_2$O to $\eta_0 = 0.68$ in G1/K$^+$ gel. These trends are quite similar to the effects of hydrogen-bonding interactions on $^{17}$O NMR parameters observed previously for carbonyl oxygen. 12,17

Figure 3 shows the $^{17}$O MAS spectra for G2/M$^{2+}$ octamers (M = Sr, Ba, Pb) obtained at 11.75 and 21.15 T. For these samples, because we had only a very small quantity for each sample (ca. 30–40 mg, 10% $^{17}$O), the signal-to-noise ratio in the spectra was generally low, especially for the spectra obtained at the low field, 11.75 T. Nonetheless, these $^{17}$O MAS spectra can also be fitted, and the spectral parameters obtained from analyses are also reported in Table 1. Similar to the observations made for G1/K$^+$ gel, the isotropic $^{17}$O chemical shifts and the $^{17}$O quadrupole parameters observed for G2/M$^{2+}$ octamers are quite different from those for G-ribbons. It is interesting to note that, although the isotropic $^{17}$O chemical shifts for G2/M$^{2+}$ octamers are similar to that observed for G1/K$^+$ gel, the observed $^{17}$O quadrupole coupling constants ($\tilde{G}_0 = 6.4–7.0$ MHz) and the asymmetry parameters ($\eta_0 = 1.0$) all suggest an ion-carbonyl interaction present in G2/M$^{2+}$ octamers stronger than that in the G1/K$^+$ gel ($\tilde{G}_0 = 7.2$ MHz and $\eta_0 = 0.68$). This effect becomes even more significant considering the fact that each O6 atom in the G1/K$^+$ gel is coordinated to two K$^+$ ions, whereas in the G2/M$^{2+}$ octamers, each O6 atom is coordinated to only one M$^{2+}$ ion. The different trends observed in $^{17}$O chemical shifts and $^{17}$O quadrupole parameters may be used for probing the mode of ion binding between monovalent and divalent cations and the carbonyl oxygen.

Determination of $^{17}$O NMR Tensors. To obtain information about the $^{17}$O quadrupole coupling tensor and the chemical shift tensor, we performed $^{17}$O NMR experiments for nonspinning (stationary) samples. Figure 4 shows the stationary spectra for...
Figure 3. Experimental and simulated $^{17}$O MAS NMR spectra for $2',3',5'$-O-triacetyl-[6-$^{17}$O]guanosine complexes with divalent metal ions at 11.75 and 21.15 T. Each sample was approximately 30–40 mg. Detailed experimental parameters are as follows. Pb$^{2+}$: 11.75 T, 12.5 kHz spinning rate, 119 577 transients, 2-s recycle delay; 21.15 T, 18 kHz spinning rate, 33 509 transients, 1-s recycle delay. Sr$^{2+}$: 11.75 T, 21.15 T, 18 kHz spinning rate, 6974 transients, 1-s recycle delay. Ba$^{2+}$: 11.75 T, 12.5 kHz spinning rate, 37 081 transients, 2-s recycle delay.

Figure 4. Experimental and simulated $^{17}$O NMR spectra for stationary samples of (A) [6-$^{17}$O]guanosine/2H$_2$O and (B) [6-$^{17}$O]guanosine/K$^+$ gel obtained at 11.75 and 21.15 T. Detailed experimental parameters are as follows. (A) 11.75 T, 120-mg sample, 30 830 transients, 2-s recycle delay; 21.15 T, 50-mg sample, 30 501 transients, 2-s recycle delay. (B) 11.75 T, 50-mg sample, 132 080 transients, 1-s recycle delay; 21.15 T, 50-mg sample, 7719 transients, 1-s recycle delay.

Calculations of $^{17}$O NMR Tensors in G-Ribbons. As mentioned in the previous section, we used the $^{17}$O NMR tensor orientations from quantum chemical calculations as initial fitting parameters in our spectral analysis. In this section, we present the details of our model building and quantum chemical calculations for G-ribbons. For G1•2H$_2$O, molecular models were constructed from the actual crystal structure for this compound. In the crystal lattice of G1•2H$_2$O, guanosine molecules are linked by O6$\cdot\cdot\cdot$H$\cdot\cdot\cdot$N2 and N7$\cdot\cdot\cdot$H$\cdot\cdot\cdot$N1 hydrogen bonds, forming G-ribbons of type A as defined in Scheme 2. There are two crystallographically distinct G-ribbons in the crystal lattice running in opposite directions along the crystallographic b-axis. Within each G-ribbon, all guanosine molecules are symmetry-related. The main difference between the two G-ribbons in the crystal lattice of G1•2H$_2$O is the strength of hydrogen bonding between guanine bases. Specifically, the O6$\cdot\cdot\cdot$H$\cdot\cdot\cdot$N2 and N7$\cdot\cdot\cdot$H$\cdot\cdot\cdot$N1 hydrogen bond lengths are quite different in the two G-ribbons (Molecule A: 2.990 and 2.876 Å; Molecule B: 2.919 and 2.816 Å). Thus, the O6 atom of Molecule B experiences a hydrogen-bonding interaction stronger than that of Molecule A. However, it is also noted that the difference between the two C=O6 bonds is rather small: 1.234 Å (Molecule A) versus 1.238 Å (Molecule B). In both G-ribbons, each O6 atom is also weakly hydrogen bonded to two water molecules of hydration with slightly different O6$\cdot\cdot\cdot$Ow distances (Molecule A: 2.930 and 2.938 Å; Molecule B: 2.919 and 3.294 Å). To model the complete hydrogen-bonding environment around the target O6 atom in a G-ribbon, we selected a three-molecule fragment and two water molecules of hydration, as illustrated in Figure 6. The calculated $^{17}$O NMR tensors for these G-ribbon models are given in Table 3. It is quite clear that the calculated $^{17}$O NMR tensors for the two
G-ribbons in G1•2H2O are in reasonable agreement with the experimental ones. The accuracies in both experimental and computational results are sufficiently high to allow an unambiguous assignment of the experimental 17O NMR tensors to the two crystallographically distinct guanosine molecules in G1•2H2O. The observed discrepancies between the two sets of 17O NMR tensors in G1•2H2O reflect essentially the aforementioned difference in hydrogen bonding between guanine bases. As seen in Figure 3, spectral differences on the order of \( \Delta \delta_{\text{iso}} \approx 13 \text{ ppm}, \Delta C_Q \approx 0.1 \text{ MHz}, \) and \( \Delta \eta_Q \approx 0.11 \) can be readily detected in the 17O MAS spectra, especially with the utility of a high magnetic field, 21.15 T. This example further illustrates the sensitivity of 17O NMR parameters on hydrogen-bonding interactions. If one examines the individual 17O chemical shift tensor components for Molecules A and B, the subtle difference in hydrogen bonding can cause a change of ca. 20−30 ppm in both \( \delta_{11} \) and \( \delta_{22} \) tensor components. The observed trends in \( \Delta \delta_{\text{iso}}, \Delta C_Q, \) and \( \Delta \eta_Q \) are all in agreement with our previous observations.12,17 As seen in Table 3, we also computed the 17O NMR tensors for an isolated guanine and for the G-ribbons in the absence of the water molecules of hydration. The calculated results suggest that the G-ribbon formation alone induces significant changes in the 17O NMR tensors: \( \Delta \delta_{\text{iso}} \approx 75 \text{ ppm}, \Delta \Omega \approx 110 \text{ ppm}, \Delta C_Q \approx 1 \text{ MHz}, \) and \( \Delta \eta_Q \approx 0.12. \) The corresponding change in the individual 17O chemical shift tensor components can exceed 100 ppm. The computational results also show that the weak hydrogen-bonding effect from the two water molecules of hydration causes further changes in the 17O chemical shielding tensor and in the 17O quadrupole coupling tensor: 20% in \( \Delta \delta_{\text{iso}} \) and 3 and 25% in \( \Delta C_Q \) and \( \Delta \eta_Q \), respectively. Therefore, the strong hydrogen bonding in the G-ribbon motif is primarily responsible for the observed 17O NMR tensors. It is important to point out that the hydrogen-

<table>
<thead>
<tr>
<th>compound</th>
<th>( \delta_{\text{iso}} ) ppm</th>
<th>( \delta_{11} \pm 5 \text{ ppm} )</th>
<th>( \delta_{22} \pm 5 \text{ ppm} )</th>
<th>( \delta_{33} \pm 5 \text{ ppm} )</th>
<th>( \Omega \pm 10 \text{ ppm} )</th>
</tr>
</thead>
<tbody>
<tr>
<td>[6-17O]guanosine dehydrate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>molecule A</td>
<td>263</td>
<td>460</td>
<td>360</td>
<td>-30</td>
<td>490</td>
</tr>
<tr>
<td>molecule B</td>
<td>250</td>
<td>440</td>
<td>340</td>
<td>-30</td>
<td>470</td>
</tr>
<tr>
<td>[6-17O]guanosine/K+ gel</td>
<td>225</td>
<td>400</td>
<td>300</td>
<td>-20</td>
<td>420</td>
</tr>
</tbody>
</table>

The relative orientation between the CS and QC tensors is \( \alpha = 0 \pm 10, \beta = 90 \pm 2, \gamma = 70 \pm 5^\circ. \) Span of the chemical shift tensor: \( \Omega = \delta_{11} - \delta_{33}. \)
bonding interactions observed in G-ribbons are significantly stronger than those present in amides and polypeptides, thus causing much larger changes in $^{17}$O NMR tensors.

Calculations of $^{17}$O NMR Tensors in G-Quartets. To model the G-quartet structure in G1/K$^+$ gel, we constructed a cluster model consisting of one G-quartet and two K$^+$ ions (denoted as K$^+$-G$_4$-K$^+$) as shown in Figure 6. The geometry of the G-quartet is based on that reported by Meyer and co-workers.\(^{(57)}\) Within the G-quartet, the O$_{6}$â–â–H-N$_1$ and N$_7$â–â–H-N$_2$ hydrogen bonds are 2.867 and 2.907 Å, respectively. The two central K$^+$ ions are separated by 3.31 Å, which was determined by powder XRD. The calculated $^{17}$O NMR tensors for the K$^+$-G$_4$-K$^+$ model are also given in Table 3. Also shown in Table 3 are the computed results for Na$^+$-G$_4$-Na$^+$ and Rb$^+$-G$_4$-Rb$^+$ models.

For the G$_2$/M$^{1+2}$ (M = Sr, Ba, Pb) octamers, we constructed a true octamer model consisting of two stacking G-quartets with a 45$^\circ$ twist with each other and one central metal ion (i.e., G$_4$-M$^{1+2}$-G$_4$). This model consists of a total of 129 atoms. The M$^{1+2}$-O$_6$ distance in the G$_2$/M$^{1+2}$ octamers is 2.63 Å, and the diagonal O$_6$-O$_6$ distance within the G-quartet is 4.46 Å. These are comparable to the X-ray crystal structural data reported by Davis and co-workers for similar lipophilic G-quartets containing Sr$^{2+}$, Ba$^{2+}$, and Pb$^{2+}$ ions.\(^{(59-61)}\) The calculated $^{17}$O NMR tensors for these octamers are also shown in Table 3. In general,

---

**Table 3.** Summary of DFT Computational Results for the $^{17}$O NMR Tensors at O$_6$ of Guanine in G-Ribbon and G-Quartet Models

<table>
<thead>
<tr>
<th>system</th>
<th>$\delta_{oa}$ (ppm)</th>
<th>$\delta_{11}$ (ppm)</th>
<th>$\delta_{22}$ (ppm)</th>
<th>$\delta_{33}$ (ppm)</th>
<th>$\Omega$ (ppm)$^2$</th>
<th>$\zeta$ (MHz)</th>
<th>$\tau_0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>guanine</td>
<td>348.6</td>
<td>609.4</td>
<td>461.9</td>
<td>-25.6</td>
<td>635.0</td>
<td>9.57</td>
<td>0.28</td>
</tr>
<tr>
<td>G-ribbon (no water)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>molecule A</td>
<td>278.0</td>
<td>503.7</td>
<td>379.3</td>
<td>-49.1</td>
<td>552.8</td>
<td>8.48</td>
<td>0.37</td>
</tr>
<tr>
<td>molecule B</td>
<td>273.7</td>
<td>492.4</td>
<td>373.6</td>
<td>-45.0</td>
<td>537.4</td>
<td>8.29</td>
<td>0.43</td>
</tr>
<tr>
<td>guanosine dihydrate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>molecule A</td>
<td>265.9</td>
<td>476.4</td>
<td>363.9</td>
<td>-42.5</td>
<td>518.9</td>
<td>8.47</td>
<td>0.39</td>
</tr>
<tr>
<td>molecule B</td>
<td>249.8</td>
<td>443.2</td>
<td>344.5</td>
<td>-38.4</td>
<td>481.7</td>
<td>8.21</td>
<td>0.49</td>
</tr>
<tr>
<td>empty G$_4$ (no metal ion)</td>
<td>318.8</td>
<td>561.4</td>
<td>417.3</td>
<td>-22.3</td>
<td>583.7</td>
<td>8.85</td>
<td>0.41</td>
</tr>
<tr>
<td>Na$^+$-G$_4$-Na$^+$</td>
<td>194.0</td>
<td>311.1</td>
<td>276.4</td>
<td>-5.6</td>
<td>316.7</td>
<td>7.30</td>
<td>0.86</td>
</tr>
<tr>
<td>K$^+$-G$_4$-K$^+$</td>
<td>205.8</td>
<td>344.0</td>
<td>278.3</td>
<td>-5.0</td>
<td>349.0</td>
<td>7.33</td>
<td>0.87</td>
</tr>
<tr>
<td>Rb$^+$-G$_4$-Rb$^+$</td>
<td>210.2</td>
<td>369.4</td>
<td>274.0</td>
<td>-12.9</td>
<td>382.2</td>
<td>7.45</td>
<td>0.91</td>
</tr>
<tr>
<td>G$_4$-Na$^+$ (in-plane binding)</td>
<td>224.9</td>
<td>373.4</td>
<td>316.1</td>
<td>-14.9</td>
<td>388.3</td>
<td>7.62</td>
<td>0.79</td>
</tr>
<tr>
<td>G$_4$-Sr$^{12+}$-G$_4$</td>
<td>221.3</td>
<td>378.7</td>
<td>301.6</td>
<td>-16.5</td>
<td>395.2</td>
<td>7.40</td>
<td>0.87</td>
</tr>
<tr>
<td>G$_4$-Ba$^{12+}$-G$_4$</td>
<td>242.5</td>
<td>420.1</td>
<td>311.6</td>
<td>-4.1</td>
<td>424.2</td>
<td>7.44</td>
<td>0.84</td>
</tr>
<tr>
<td>G$_4$-Pb$^{12+}$-G$_4$</td>
<td>234.4</td>
<td>399.5</td>
<td>310.1</td>
<td>-6.5</td>
<td>406.0</td>
<td>7.31</td>
<td>0.86</td>
</tr>
</tbody>
</table>

---

calculated the 17 O NMR tensors for an empty G-quartet model.

Angew. Chem., Int. Ed. (61) Shi, X.; Fettinger, J. C.; Davis, J. T.


Dependence of 13 C (top) and 17 O (bottom) CS tensors on the bonding and ion

interactions. Another objective of performing quantum chemi-

cal calculations is to be able to separate the effects of hydrogen

bonding and ion—carbonyl interactions. To this end, we calculated the 17 O NMR tensors for an empty G-quartet model (Table 3). Comparison of the 17 O NMR tensors calculated for these different models allows the separation of the effect from ion—carbonyl interactions from hydrogen-bonding interactions. As shown in Figure 8, the hydrogen bonding in the G-quartet is responsible for \( \Delta C_O = 0.7 \text{ MHz} \), \( \Delta \eta_O = 0.13 \), \( \Delta \delta_{iso} = 30 \text{ ppm} \), and \( \Delta \Omega = 52 \text{ ppm} \). Interestingly, these changes are not as large as those caused by the formation of a G-ribbon. On the other hand, the ion—carbonyl interaction in the G-quartet causes further changes of the 17 O NMR parameters: \( \Delta C_O > 1.4 \text{ MHz} \), \( \Delta \eta_O > 0.45 \), \( \Delta \delta_{iso} > 100 \text{ ppm} \), and \( \Delta \Omega > 180 \text{ ppm} \). Apparently, the ion—carbonyl interaction causes significantly larger changes in the 17 O NMR parameters than does the hydrogen-bonding interaction. It should be mentioned that, although the computed results are similar for all the G-quartet models shown in Figure 8, the ion—carbonyl interaction from a divalent cation is clearly much greater than that from a single monovalent cation; the apparently similar results are simply due to the different binding modes between divalent and monovalent cations: \( O6^{2+} \cdots M^{2+} \) versus \( M^{+} \cdots O6^{–} \cdots M^{+} \). This conclusion is in agreement with that made by Chekmenev et al.\(^{27}\) regarding the effect of Li\(^{+}\) and Ca\(^{2+}\) on the 17 O NMR tensors of a peptide carbonyl oxygen.

For completeness, we also computed the 17 O NMR tensors for a G-quartet containing a Na\(^{+}\) ion in an in-plane binding mode. This type of ion binding to a G-quartet has been observed only for Na\(^{+}\) in two G-quadruplex DNA oligomers.\(^{62,63}\) Other alkali metal ions such as K\(^{+}\) and Rb\(^{+}\) are too large to fit into the center of a G-quartet. The computed 17 O NMR tensors for the in-plane binding mode exhibit \( \Delta \delta_{iso} = 30 \text{ ppm} \), \( \Delta C_O = 0.32 \text{ MHz} \), and \( \Delta \eta_O = -0.07 \), compared to those for the cavity binding mode, \( G_4 \cdots Na^+ \cdots G_4 \). Such changes in 17 O NMR parameters suggest that the O6 atom experiences overall a weaker ion—carbonyl interaction when a single Na\(^{+}\) ion is located in the G-quartet plane than when two Na\(^{+}\) ions are out of the plane. This is another example where a single strong Na\(^{+}\)····O6 interaction (\( R_{Na\cdots O6} = 2.285 \text{ Å} \)) in \( G_4 \cdots Na^+ \cdots G_4 \) is overtaken by the sum of two weak Na\(^{+}\)····O6 interactions (\( R_{Na\cdots O6} = 2.818 \text{ Å} \)) in \( Na^+ \cdots G_4 \cdots Na^- \). These spectral differences may be used to distinguish these two modes of Na\(^{+}\) binding to a G-quartet. In this regard, we showed recently that 23Na NMR parameters for Na\(^{+}\) ions are also sensitive to the mode of Na\(^{+}\) binding and that \( \delta_{iso} (\text{Na}) \) is perhaps a better probe for the detection of different Na\(^{+}\) binding modes in G-quartets.\(^{64}\) It is certainly an ideal situation if a particular ion—carbonyl interaction can be studied from both sides. That is, simultaneous detection of 17 O NMR signals for the carbonyl group and metal NMR for the ion would yield most reliable information about the ion—carbonyl interaction.

Comparison between 17 O and 13 C Chemical Shift Tensors. Because both 17 O and 13 C chemical shift tensors were generated in the same set of quantum chemical calculations, it is worth examining how the 13 C chemical shifts of the carbonyl carbon respond to both hydrogen bonding and ion—carbonyl interactions in G-ribbons and G-quartets. As shown in Figure 9, as the strength of hydrogen bonding and ion—carbonyl interactions increases, two of the 13 C CS tensor components, \( \delta_{11} \) and \( \delta_{22} \), change in opposite directions by approximately the same amounts. Meanwhile the 13 C CS component \( \delta_{33} \) is insensitive to these interactions. As a result, the isotropic 13 C chemical shift is also rather insensitive to the presence of hydrogen bonding and ion—carbonyl interactions, simply due to a partial cancelation between \( \delta_{11} \) and \( \delta_{22} \) components. This trend has also been observed for the backbone carbonyl carbon in peptides and proteins.\(^{65,66}\) In contrast, the isotropic 17 O chemical shift is much more sensitive to hydrogen bonding and ion—carbonyl interactions, because \( \delta_{11} \) and \( \delta_{22} \) components change in the same direction, thus enhancing the effect. These calculated results

![Figure 9. Dependence of 13C (top) and 17O (bottom) CS tensors on the presence of hydrogen bonding and ion—carbonyl interactions.](image)

as illustrated in Figure 7, the calculated 17 O chemical shift and quadrupole coupling tensors for G-ribbons and G-quartets are in reasonable agreement with the experimental results. All the observed trends in 17 O NMR tensors were reproduced by the DFT calculations.

Separation of Hydrogen Bonding and Ion—Carbonyl Interactions. Another objective of performing quantum chemical calculations is to be able to separate the effects of hydrogen bonding and ion—carbonyl interactions. To this end, we calculated the 17 O NMR tensors for an empty G-quartet model (Table 3). Comparison of the 17 O NMR tensors calculated for these different models allows the separation of the effect from ion—carbonyl interactions from hydrogen-bonding interactions. As shown in Figure 8, the hydrogen bonding in the G-quartet is responsible for \( \Delta C_O = 0.7 \text{ MHz} \), \( \Delta \eta_O = 0.13 \), \( \Delta \delta_{iso} = 30 \text{ ppm} \), and \( \Delta \Omega = 52 \text{ ppm} \). Interestingly, these changes are not as large as those caused by the formation of a G-ribbon. On the other hand, the ion—carbonyl interaction in the G-quartet causes further changes of the 17 O NMR parameters: \( \Delta C_O > 1.4 \text{ MHz} \), \( \Delta \eta_O > 0.45 \), \( \Delta \delta_{iso} > 100 \text{ ppm} \), and \( \Delta \Omega > 180 \text{ ppm} \). Apparently, the ion—carbonyl interaction causes significantly larger changes in the 17 O NMR parameters than does the hydrogen-bonding interaction. It should be mentioned that,

demonstrate that $^{17}$O NMR is a much better probe than $^{13}$C NMR for studying a carbonyl group (C=O) involved in either hydrogen bonding or ion—carbonyl interactions.

4. Conclusion

In this study, we have determined the $^{17}$O quadrupole coupling tensor and chemical shift tensor for the carbonyl oxygen O6 of guanine in several [6-$^{17}$O]guanosine derivatives that form either G-ribbons or G-quartets. This work represents the first experimental characterization of $^{17}$O NMR tensors in these structures. The observed $^{17}$O quadrupole coupling and chemical shift tensors exhibit remarkable sensitivity to the presence of both hydrogen bonding and ion—carbonyl interactions. We have found that the effect from ion—carbonyl interactions is significantly greater than that from hydrogen-bonding interactions. Our computational results illustrate that $^{17}$O NMR exhibits a much greater sensitivity to the presence of hydrogen bonding and ion—carbonyl interactions than does $^{13}$C NMR for the C6—O6 carbonyl group in guanine. This conclusion is also generally true for other carbonyl groups such as the peptide carbonyl group. Our results have not only confirmed the sensitivity of $^{17}$O NMR tensors to hydrogen bonding, but also established a new basis for solid-state $^{17}$O NMR studies of ion binding. The results present in this work, together with the recent findings of Chekmenev et al.,27,28 have clearly demonstrated the potential of solid-state $^{17}$O NMR for biological systems. It is also important to keep in mind that the experimental data presented in this study should be considered as benchmarks for ion—carbonyl interactions in G-quartets. In real biological systems, ion-binding phenomena are often associated with a dynamic process. Under such circumstances, the observable effect may be complicated by either short residence time or partial occupancy. Nevertheless, the solid-state $^{17}$O NMR approach demonstrated here promises to offer a new angle into the study of this fundamental molecular interaction. We are currently exploring the possibility of introducing $^{17}$O labels into G-quadruplex DNA.

Acknowledgment. This work was supported by the Natural Sciences and Engineering Research Council (NSERC) of Canada. Quantum chemical calculations were performed at the High Performance Computing Virtual Laboratory (HPCVL) at Queen’s University. Access to the 900 MHz NMR spectrometer was provided by the National Ultrahigh Field NMR Facility for Solids (Ottawa, Canada), a national research facility funded by the Canada Foundation for Innovation, the Ontario Innovation Trust, Recherche Québec, the National Research Council Canada, and Bruker BioSpin and managed by the University of Ottawa (http://www.nmr900.ca). We thank Dr. Victor Ter-skikh for technical assistance.

Supporting Information Available: Complete citation for ref 49. 1D $^1$H and 2D NOESY NMR spectra for $G_2/M_2^+$ octamers in CDCl$_3$. Atomic coordinates (in PDB format) of the G-ribbon and G-quartet models. This material is available free of charge via the Internet at http://pubs.acs.org.

JA067991M