"It is fantastic! I’ve just seen the future of the journal."

Ed Pentz
Executive Director, CrossRef

Features include
- IUPAC Gold Book terms linked
- Hyperlinked compound information in text
- Ontology terms linked to definitions and related papers
- RSS feeds on ontology terms and compound structures

Benefits
- Completely free service
- At a glance HTML view with additional features accessible by toolbox
- Downloadable compound structures
- Printer friendly

Science comes alive with RSC Project Prospect

Scientists trawling through the thousands of research papers published every month must wish their computer could do the job for them. This could soon be a reality thanks to RSC Project Prospect, an initiative developed by RSC Publishing together with academic partners. Readers can click on named compounds and scientific concepts in an electronic journal article to download structures, understand topics, or link through to electronic databases. Powerful functionality instantly helps researchers to find, understand and share (bio)chemical knowledge with each other quicker than ever before. See the science in journal articles come alive: visit the RSC Project Prospect website for FAQs, examples, contact information and latest news.

www.projectprospect.org

Registered Charity Number 207890
Direct NMR evidence for Ca$^{2+}$ ion binding to G-quartets†

Irene C. M. Kwan,a Alan Wong,b Yi-Min She,a Mark E. Smithb and Gang Wua

Received (in Austin, TX, USA) 25th September 2007, Accepted 25th October 2007
First published as an Advance Article on the web 8th November 2007
DOI: 10.1039/b714803h

We report the first 1H and 43Ca NMR characterization of Ca$^{2+}$ ion binding to G-quartets.

G-Quartets have attracted considerable attention in various areas of research ranging from molecular biology to nanotechnology.1,2 G-Quartet formation generally requires the presence of metal ions and is known to be promoted by monovalent (Na$^+$, K$^+$, Rb$^+$, NH$_4^+$, Ti$^3+$) and divalent (Sr$^{2+}$, Ba$^{2+}$, Pb$^{2+}$) cations. Recently, we showed that trivalent lanthanide (La$^{3+}$, Eu$^{3+}$, Tb$^{3+}$, Dy$^{3+}$, Tm$^{3+}$) metal ions can also template G-quartet formation3 and Neidle and co-workers4 reported the first crystallographic evidence for Ca$^{2+}$ ions occupying the central cavity of a DNA G-quadruplex formed by d(TG$_4$A)$_2$. Here we report direct 1H and 43Ca NMR characterization of Ca$^{2+}$ ion binding to the G-quartet structure formed by self-assembly of 2',3'-5'-O-triacetylguanosine (TAG) in solution.

Fig. 1 shows the 1H NMR spectra of monomeric TAG in DMSO and TAG–Ca$^{2+}$ complex in CDCl$_3$. The 1H NMR signals for the imino (N1H) and one of the amino protons (N3H$_A$) are significantly shifted toward high-frequency positions (with larger chemical shift values) in the TAG–Ca$^{2+}$ complex. Two sets of signals (in a 1 : 1 ratio) are observed for each proton, indicating that both anti and syn conformers are present in solution, as previously observed by Davis and co-workers.5 All these spectral features are characteristic of G-quartet formation. Comparison of the integrated areas for the TAG signals and the picrate signal ($\delta = 8.94$ ppm) suggests a molecular ratio of 4 : 1 between TAG and picrate, thus a ratio of 8 : 1 between TAG and Ca$^{2+}$. This indicates that the basic unit of the TAG–Ca$^{2+}$ complex is an octamer containing two G-quartets and a central Ca$^{2+}$ ion, i.e., [TAG$_4$Ca$^{2+}$]. This stoichiometry was found to be independent of the picrate concentrations in the aqueous phase during the extraction process. To further confirm G-quartet formation in the TAG–Ca$^{2+}$ complex, we obtained 2D NOESY spectra of the complex. As seen in Fig. 2, cross peaks are observed between N3H$_A$ and H8 protons and between N1H and H8 protons. These NOE cross peaks arise from intra-base close contacts, which are the spectral signatures of G-quartet formation. We also performed electrospray ionization mass spectrometry (ESI-MS) and tandem mass spectrometry (MS/MS) experiments for the TAG–Ca$^{2+}$ complex.6 The MS and MS/MS results prove unambiguously that [TAG$_4$Ca$^{2+}$] (m/z: 1656.424) is the predominant species in the gas phase. Because the ionic radius of Ca$^{2+}$ (1.12 Å for a coordination number of 8) is similar to those of Na$^+$ (1.18 Å), K$^+$ (1.33 Å) and Sr$^{2+}$ (1.26 Å),6 it is not surprising that a Ca$^{2+}$ ion can fit into the central cavity between two G-quartets.

Now that we have established the G-quartet formation of TAG promoted by Ca$^{2+}$ ion binding, we attempt to obtain the 43Ca NMR signature for Ca$^{2+}$ ions residing inside the cavity between G-quartets. 43Ca (spin 7/2, natural abundance 0.145%, $Q = -40.8 \times 10^{-3}$ m$^{-1}$, $\nu_0 = 40.4$ MHz at 14.1 T) is among a group of low-γ quadrupolar nuclei that are notoriously difficult to study by NMR spectroscopy.7 In the past few years, 43Ca NMR spectroscopy has been used to study Ca$^{2+}$ binding in inorganic materials,8 simple organic salts,9 and in proteins.$^{10-20}$ Fig. 3 shows the natural abundance 43Ca NMR spectra of CaCl$_2$(aq), CaPic$_2$(aq) and TAG–Ca$^{2+}$ in CDCl$_3$ at 14.1 T. 43Ca NMR signal at ~43 ppm is clearly observed for the [TAG$_4$Ca$^{2+}$] octamer. To establish a relationship between the observed 43Ca chemical shift and ion coordination geometry, we performed extensive quantum chemical shielding calculations.8 We constructed four molecular models, each containing two stacking G-quartets and a central Ca$^{2+}$ ion. In Model I, we used the crystal structure of a Sr$^{2+}$ complex of 5'-silyl-2',3'-O-isopropylidene guanosine23 and simply replaced the Sr$^{2+}$ ion with Ca$^{2+}$. The experimental 43Ca NMR signal at ~43 ppm is consistent with this model. Comparison of the natural abundance 43Ca NMR spectra of NaCl$_2$(aq), KCl$_2$(aq), SrCl$_2$(aq), BaCl$_2$(aq), CaCl$_2$(aq), CaPic$_2$(aq) and TAG–Ca$^{2+}$ in CDCl$_3$ at 14.1 T with the MS/MS results shows that the predominant species in the gas phase is TAG–Ca$^{2+}$ in CDCl$_3$ at 14.1 T.

Fig. 1 Regions of 1H NMR spectra of (A) TAG in DMSO at 298 K, (B) TAG–Ca$^{2+}$ complex in CDCl$_3$ at 298 K, and (C) TAG–Ca$^{2+}$ complex in CDCl$_3$ at 268 K. * marks the signal from picrate; see text for discussion.

a Department of Chemistry, Queen’s University, 90 Bader Lane, Kingston, Ontario, Canada K7L 3N6.
E-mail: gang.wu@chem.queensu.ca

b Department of Physics, University of Warwick, Gibbet Hill Road, Coventry, UK CV4 7AL.

† Electronic supplementary information (ESI) available: Electrospray ionization MS and MS/MS spectra; link to PDB 2GW0. Complete 2D 1H NOESY spectrum. See DOI: 10.1039/b714803h

ion by a Ca$^{2+}$ ion. In Model II, we used one of the Ca$^{2+}$ sites (Ca55) in the new crystal structure of d(TG4T) (PDB entry: 2GW0). In Model III, we used the crystal structure of a Na$^+$ complex of 5'-silyl-2',3'-O-isopropylidene guanosine and replaced the Na$^+$ ion by a Ca$^{2+}$ ion. Model IV consists of two idealized G-quartets (geometry optimized at B3LYP/6-311G**) separated by 3.32 Å and a central Ca$^{2+}$ ion. In each model, the Ca$^{2+}$ ion is coordinated to eight guanine carbonyl oxygen (O6) atoms in a bipyramidal antiprism fashion, as illustrated in Fig. 4. Among these models, the geometry of individual G-quartets is essentially the same. The main difference lies in the size of the central cavity between G-quartets, which is reflected by the different Ca–O6 distances. Model I should most resemble the situation in [TAG$_8$Ca$^{2+}$]. The computed 43Ca chemical shifts from these models are shown in Table 1. As shown in Fig. 5, we found a correlation between calculated 43Ca chemical shifts and average Ca–O6 distances among the four octamer models. This correlation is in excellent agreement with recent findings in both inorganic and organic systems. In addition, it is comforting to see that the 43Ca calculations with different methods and basis sets predict chemical shifts within 10 ppm, which is much smaller than the entire 43Ca chemical shift range of ca. 200 ppm. Using this observed correlation, we estimate the average Ca–O6 distance in [TAG$_8$Ca$^{2+}$] to be approximately 2.70 ± 0.05 Å, which is quite reasonable compared to that found at the Ca site in d(TG$_4$T), 2.76 Å. We also calculated the electric field gradient at the Ca$^{2+}$ site for all the models. The computations consistently predict that the magnitude of the 43Ca nuclear quadrupole coupling constant is less than 1 MHz. This explains why a relatively small line width (ca. 600 Hz) was observed in the 43Ca NMR spectrum of [TAG$_8$Ca$^{2+}$].

Table 1 Calculated and experimental 43Ca chemical shifts (in ppm) for four models, each containing two G-quartets and a central Ca$^{2+}$ ion.

<table>
<thead>
<tr>
<th>Method/basis set</th>
<th>Model I</th>
<th>Model II</th>
<th>Model III</th>
<th>Model IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>HF/6-311++G**</td>
<td>−38.1</td>
<td>−62.8</td>
<td>−75.0</td>
<td>−63.9</td>
</tr>
<tr>
<td>HF/cc-pVTZ</td>
<td>−28.8</td>
<td>−50.8</td>
<td>−63.8</td>
<td>−53.4</td>
</tr>
<tr>
<td>HF/Sadlej pVTZ</td>
<td>−34.5</td>
<td>−55.6</td>
<td>−66.8</td>
<td>−57.4</td>
</tr>
<tr>
<td>B3LYP/6-311++G**</td>
<td>−37.2</td>
<td>−63.0</td>
<td>−74.1</td>
<td>−62.9</td>
</tr>
<tr>
<td>B3LYP/cc-pVTZ</td>
<td>−26.4</td>
<td>−50.2</td>
<td>−63.5</td>
<td>−52.2</td>
</tr>
<tr>
<td>B3LYP/Sadlej pVTZ</td>
<td>−37.9</td>
<td>−61.3</td>
<td>−73.5</td>
<td>−63.4</td>
</tr>
<tr>
<td>Expt</td>
<td>−45 ± 2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[a] See text for model descriptions and footnote for computational details.
In summary, we have presented the first 1H and 43Ca NMR characterization of Ca$^{2+}$-templated G-quartet formation. The 43Ca NMR signature observed for Ca$^{2+}$ ions residing inside the central cavity between G-quartets provides a benchmark for future studies of Ca$^{2+}$ ion binding in DNA G-quadruplex systems. Because Ca$^{2+}$ ions are ubiquitous in cells, the biological implication of Ca$^{2+}$ binding in DNA G-quadruplexes should be further investigated. Previous studies by Sugimoto and co-workers have indeed shown that Ca$^{2+}$ ions may play an important role in the structural polymorphism of certain DNA G-quadruplexes. Our finding suggests that 43Ca NMR spectroscopy will be a useful tool in these studies. For large DNA G-quadruplexes, it will almost certainly be necessary to use 43Ca isotope enrichment to increase NMR sensitivity.

This work was supported by the NSERC of Canada. A. W. thanks the NSERC of Canada for a postdoctoral fellowship. M. E. S. thanks the BBSRC, EPSRC and the University of Warwick for funding. All ESI-MS spectra were obtained at Queen’s University MassSpec Facility, which is supported by the Canada Foundation for Innovation (CFI). All quantum chemical calculations were performed at the High Performance Computing Virtual Laboratory (HPCVL) at Queen’s University. We thank Professor Stephen Neidle for providing a preprint of ref. 4.

Notes and references

‡ 2',3',5'-O-Triacyctlyguanosine (TAG, 98% purity) was purchased from Sigma-Aldrich and used without further purification. TAG-Ca$^{2+}$ complex was prepared using a liquid–liquid extraction method using CHCl$_3$ and an aqueous solution of calcium picrate. Warning: Caution should be exercised when handling picrates. After 24 h of extraction, the organic phase was prepared using a liquid–liquid extraction method using CHCl$_3$ and an aqueous solution of calcium picrate. Warning: Caution should be exercised when handling picrates. After 24 h of extraction, the organic phase was prepared using a liquid–liquid extraction method using CHCl$_3$ and an aqueous solution of calcium picrate. Warning: Caution should be exercised when handling picrates.

§ All solution 43Ca NMR experiments were performed on a Chemagnetics-Varian Infinity 600 (14.1 T) spectrometer operating at 40.386 MHz for 43Ca nuclei. A Varian T3 rotor (9.5 mm diameter) was used to increase the NMR sensitivity. The strength of the radio-frequency field was approximately 14 kHz. A spectral window of 50 kHz was used. All 43Ca chemical shifts are referenced to the signal from 1 M CaCl$_2$(aq), δ(Ca) = 0 ppm.

° Quantum chemical calculations were performed using the Gaussian 03 suite of programs20 on a SunFire 6800 symmetric multiprocessor system. Each of the four nodes is equipped with a 24×1.05 GHz (8 MB E-Cache) UltraSPARC-III processor and 96 GB of RAM. For the central Ca atom, we chose three different all-electron basis sets: 6-311++G**, cc-pVTZ and Sadlej pVTZ.22 A 6-31G* basis set was used for all other non-metal atoms. Each octamer model consists of 129 atoms. Chemical shielding calculations were performed at both Hartree–Fock (HF) and density-functional theory (DFT) levels using the GIAO method as implemented in Gaussian 03. The computed absolute chemical shielding constant (σ) was converted to the chemical shift scale (δ) using $\delta = \sigma_{\text{ref}} - \sigma$, where σ_{ref} is the absolute chemical shielding constant for the reference sample, a fully hydrated cluster, [Ca(H$_2$O)$_{4}$]$^{3+}$ (MP26-311++G** fully optimized geometry: Ca–O$_{W}$ 2.480 Å).