Anthracene as a Launchpad for a Phosphinidene Sulfide and for Generation of a Phosphorus–Sulfur Material Having the Composition P₂S, a Vulcanized Red Phosphorus That Is Yellow

Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
Max Planck Institute for Solid State Research, Stuttgart 70569, Germany
Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
Department of Chemistry, Columbia University, New York, New York 10027, United States
Department of Chemistry, Queen’s University, Kingston, Ontario K7L3N6, Canada
Department of Applied Physics & Applied Mathematics, Columbia University, New York, New York 10027, United States
Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, United States

ABSTRACT: Thermolysis of a pair of dibenzo-7-phospha-norbornadiene compounds is shown to lead to differing behaviors: phosphinidene sulfide release and formation of amorphous P₂S₁. These compounds, [BuP(S)A]₁ (A = C₁₀H₁₀ or anthracene; 59% isol. yield) and [HP(S)A]₂ (2, 63%), are available through thionation of BuPA and the new secondary phosphine HPA (5), prepared from Me₂NPA and DIBAL-H in 50% yield. Phosphinidene sulfide [BuP≡S] transfer is shown to proceed efficiently from 1 to 2,3-dimethyl-1,3-butadiene to form Diels–Alder product 3 with a zero-order dependence on diene. Platinum complex (Ph₃P)₂Pt([η²-BuPS]₅) (4, 47%) is also accessed from 1 and structurally characterized. In contrast, heating parent species 2 (3 h, 135 °C) under vacuum instead produces an insoluble, nonvolatile yellow residual material 6 of composition P₂S that displays semiconductor properties with an optical band gap of 2.4 eV. Material 6 obtained in this manner from molecular precursor 2 is in a poorly characterized portion of the phosphorus–sulfur phase diagram and has therefore been subjected to a range of spectroscopic techniques to gain structural insight. X-ray spectroscopic and diffraction techniques, including Raman, XANES, EXAFS, and PDF, reveal 6 to have similarities with related compounds including P₂S₃. Hittorf’s violet phosphorus. Various possible structures have been explored as well using quantum chemical calculations under the constraint that each phosphorus atom is trivalent with no terminal sulfide groups, and each sulfur atom is divalent. The structural conclusions are supported by data from phosphorus-31 magic angle spinning (MAS) solid state NMR spectroscopy, bolstering the structural comparisons to other phosphorus–sulfur systems while excluding the formulation of P₂S as a simple mixture of P₂S₃ and phosphorus.

1. INTRODUCTION

Anthracene-based molecular precursors have proven effective at delivering a range of reactive main group small molecules, including silylenes, germylenes, nitrous oxide, phosphinidenes, phosphalkynes, and sulfur monoxide, among others. These reactive fragments supported atop anthracene can often be extruded upon heating in a process driven by aren rearomatization. In pursuit of expanding the classes of small molecules accessible using this strategy, we have targeted the development of anthracene-based molecular precursors to phosphinidene sulfides (“thioxophosphines”). Phosphinidene sulfides have drawn recent interest as carbene analogues,1 yet, their study is complicated by their general instability,1,6 and they are normally not isolated but rather generated in situ.1,4,14,16,17,18 As such, molecular precursor
chemistry stands to greatly assist our understanding of the chemistry of phosphinidene sulfides.

Our previous studies on phosphinidene generation have shown that a phosphorus bridge can be installed across the 9,10-positions of anthracene in one step from several commercially available dichlorophosphines, RPCl2, to yield RPA compounds (A = C6H4 or anthracene).6,3 Addition of a sulfur atom to the phosphorus lone pair of RPA compounds was expected to yield RP(S)A compounds (Scheme 1),

Scheme 1. Thionation of an RPA Compound Envisioned To Produce a Molecular Precursor for Thermal Release of a Phosphinidene Sulfide (RP=S) Species (Top), by Analogy with Stille’s Classic Phenylphosphinidene Oxide Precursor (Bottom)19

![Scheme 1](image)

anthracene analogues of Stille’s classic phenylphosphinidene oxide precursor.19 Over the course of our studies, we have investigated two RP(S)A compounds, BuP(S)A (1) and HP(S)A (2), and uncovered two disparate thermal fragmentation patterns. Behavior consistent with the anticipated phosphinidene sulfide release was observed for 1, but 2 instead produced a new phosphorus-sulfur material, P2S, upon heating. As effectively a form of “vulcanized red phosphorus”, this material exists in a distinct and poorly characterized portion of the phosphorus-sulfur phase diagram and is distinct from previously described “P2S2”.20-23

2. RESULTS AND DISCUSSION

2.1. Synthesis and Reactivity of 1BuP(S)A. Our studies began by thionation of 1BuPA with Ph3As=S,24 providing 1BuP(S)A (1) in 59% isolated yield. Thermal fragmentation at 70 °C with 2,3-dimethyl-1,3-butadiene (DMB) in benzene-d6 solution gave quantitative anthracene formation and 70% conversion to Diels−Alder product 3 (Scheme 2).12

Scheme 2. Transfer from 1 Occurring through Free 1BuP=S Evolution at Elevated Temperatures, Demonstrated by Diels−Alder Cycloaddition with 2,3-Dimethyl-1,3-butadiene (DMB), or through Associative Transfer as with (Ph3P)2Pt(η2-C2H4)

![Scheme 2](image)

Monitoring the kinetic profile of this process with NMR spectroscopy revealed a first-order dependence on the concentration of 1 that was independent of the concentration of DMB. This is consistent with rate limiting fragmentation of 1 into 1BuP=S and anthracene followed by rapid interception by DMB, behavior analogous to that exhibited by related R2NP compounds.7 An Eyring analysis allowed measurement of the activation barrier to be ΔH° = 27.8(8) kcal/mol and ΔS° = 8.0(2.4) cal/mol K (Figure S40), and density functional theory (DFT) calculations25,26 at the RI-B2PLYP-D3(BJ)/Def2-TZVP level of theory27−29 suggested fragmentation proceeds through concerted, asymmetric chelotropic cyclodeletion (Figure 1). This pathway along the closed-shell singlet manifold was selected in comparison with other anthracene-based precursors,5 but other fragmentation pathways including singlet and triplet biradical intermediates can also be envisioned.

This thermal fragmentation is quite similar to that from a recent report from Wang and Mathey.12 Dehydrohalogenation of a precursor using triethylamine likely produced a 7-phosphanorbornadiene intermediate (Scheme 3); however, this intermediate was not observed and was described to immediately collapse. Depending on the substituent, this transformation was performed at either room temperature or at 110 °C to produce the phthalimide and transfer [RP=S] to DMB.

In addition to the proposed thermal generation of free 1BuP=S, 1 was also competent at 1BuP=S transfer without thermal activation, behavior consistent with an associative process. Treatment with (Ph3P)2Pt(η2-C2H4) in DCM solution resulted in a rapid reaction at 22 °C, producing (Ph3P)2Pt(η2- BuP=S) (4) along with ethylene and anthracene. Complex 4 was isolated in 47% yield by fractional recrystallization from diethyl ether. To the best of our knowledge, this phosphinidene sulfide complex is the first reported for a group 10 metal. A wide variety of synthetic methods for RP=S assembly at a transition metal have been reported, including reduction of RP(S)Cl2 compounds,30
intermediate between standard single P=S (2.14 Å) and double P=S (1.96 Å) bond lengths, indicating significant back-donation by the platinum center. Analysis of model complex (Me₅P)₂Pt(η²-MeP=S) by natural bond orbital (NBO) methods revealed a P=S natural bond order of 1.2, a Pt→P bond order of 0.4, a Pt→S bond order of 0.4, a platinum natural charge of 0.0, and a platinum natural electron configuration of [Xe]6s⁰5d⁵⁹⁶. These results suggest 4 to be somewhat closer to a platinum(0) complex than a platinum(II) complex; however, the square planar geometry and natural bond orders clearly show a high degree of platinum(II) character.

2.2. Synthesis of HPA (5) and HP(S)A (2). As a precursor to BuP=S, 1 exhibits several desirable features over previously reported precursors. It does not require exogenous base or reductant and it can be activated thermally rather than photochemically. We were therefore excited to investigate whether this platform could be used to access the parent phosphinidene sulfide, HP=S, also known as “thioxophosphane”. This second-row analogue of HN=S is stable in the gas phase and has been proposed to be a species of astrochemical importance, but has only been lightly studied following its unselective production by high-energy electric discharge and ionization methods.

Synthesis of parent secondary phosphine sulfide HP(S)A (2) required HPA (5) as an intermediate. Though successful for other strained chlorophosphines, we found reduction of CIPA with LiAlH₄ and similar nucleophilic hydride sources to give only decomposition, likely due to the fragility of the strained C=P=C bridge toward nucleophilic opening as in aziridines and phosphoranes. Instead, treatment of Me₅NPA with an electrophilic hydride source, di-isobutylaluminium hydride (DIBAL-H, 2.2 equiv), in thawing toluene provided 5 (31P δ 162 ppm, 1JPH = 161 Hz) in fair yield (50%, Scheme 4). A single-crystal X-ray diffraction study revealed structural parameters in line with those reported for other RPA species (Figure 3a). This light-sensitive compound was not found to fragment thermally into anthracene and phosphinidene HP; upon heating, in agreement with our current understanding of requisite substituent patterns for phosphinidene generation.

Thionation of 5 proceeded cleanly in THF solution using Ph₃E=S (E = As, Sb), with the resultant 2 precipitating directly (Scheme 4). Collection by filtration and washing with diethyl ether provided clean 2. The 31P resonance of 2 was observed at δ 209 ppm (99% yield, 1JPH = 148 Hz). The strong 1JPH coupling clarified 2 to exist as the secondary phosphine sulfide tautomer rather than thiophosphinous acid HS=PA. Such a tautomer would also

Scheme 3. Recent Report of Wang and Mathey That Described a Series of Related Precursors That Likely Fragment through an Unobserved 7-Phosphanorbornadiene Intermediate

Scheme 4. Preparation of Molecular Precursor 2 Proceeded in Two Steps from Me₅NPA

Figure 2. Structure of 4 from an X-ray diffraction study shown with 50% probability thermal ellipsoids.

**Figure 3. Structures of (a) 5 and (b) 2 from single-crystal X-ray diffraction studies shown with 50% probability thermal ellipsoids. (a) Selected interatomic distances [Å] and angles [°] for 5: Pt1–C2 1.900(2), C2–Pt1–C2a 1.791(15), Pt1–C1 1.8766(17), C8–Pt1–C1 1.8716(18), C1–Pt1–C8 1.9414(7). (b) Selected interatomic distances [Å] and angles [°] for 2: P1–C1 1.8766(17), P1–C8 1.8716(18), P1–S1 1.9414(7), C1–P1–C8 82.40(8), C1–P1–S1 121.53(6), C8–P1–S1 121.87(6).
be an interesting compound as a possible precursor to HSP.51 Another species known to be stable in the gas phase,42 unexpectedly poor solubility properties were observed in many common organic solvents including benzene, diethyl ether, THF, and hexane, but 2 is soluble in the more polar solvents acetonitrile, dichloromethane, and pyridine. X-ray crystallographic characterization revealed extended hydrogen-bonding chains of 2 (Figures 3b and 4), explaining the poor solubility in solvents that do not readily engage in hydrogen bonding.

Figure 4. Depiction of the hydrogen-bonding network of 2 in the crystal. Selected interatomic distance [Å] and angles [°]: P–H 1.35(2), H–S 2.99(2), P–S 4.303(7); P–H–S 166(1).

2.3. Formation of an Amorphous P\textsubscript{2}S Material

Thermal fragmentation of 2 into anthracene and transient [HP=S] was anticipated in analogy to the behavior of 1. Computational studies supported this expectation, predicting an activation barrier only $\Delta G^\ddagger = 1.9$ kcal/mol higher than that of 1 (Figure 1). However, heating a pyridine solution of 2 in the presence of DMB to 75 °C for 2 h did not yield the expected Diels–Alder product, instead giving a yellow insoluble precipitate (6) and quantitative production of anthracene (Scheme 5). Yellow insoluble solids were also observed upon heating 2 in solutions lacking DMB and when heating the solid compound under vacuum.

Scheme 5. Thermal Fragmentation of 2 Not Giving Competent HP=S Transfer to 2,3-Dimethyl-1,3-butadiene (DMB), Instead Yielding a Solid Yellow P\textsubscript{2}S (6) Material

\[
\begin{array}{c}
\text{DMB} \\
\text{H}^+ \text{P} \text{S} \text{S} \text{H}^+ \\
\xrightarrow{75 \degree C, 2 h} \text{S} \text{H}^+ \\
\text{2} \xrightarrow{140 \degree C, 3 h} \text{H}_2\text{S} \\
\text{A} \quad \text{A}, 0.5 \text{H}_2\text{S} \\
\text{P}_n \text{S}_m \text{P}_n \text{S}_m \rightarrow \text{P}_2\text{S}_n \\
\end{array}
\]

To probe for the presence of [HP=S] in the gaseous effluent from heating solid 2, we turned to molecular beam mass spectrometry (MBMS). At a temperature of ca. 85 °C, we primarily observed release of a fragment at 34 m/z with only a trace at 64 m/z (HP=S+). This could correspond to either PH\textsubscript{3}+ or H\textsubscript{2}S+. Definitive identification was accomplished by condensation of the gas into an NMR tube that was then flame-sealed and analyzed by ^{1}H and ^{31}P NMR spectroscopy, showing release of H\textsubscript{2}S with only traces of PH\textsubscript{3}.

The yellow insoluble material 6 was accessed more straightforwardly by heating solid 2 within a sublimation apparatus to 130–140 °C under vacuum (∼10−5 Torr) for 3 h, allowing nearly quantitative anthracene recovery on the coldfinger. The yellow waxy solid so obtained is insoluble in common organic solvents, including acetone, THF, diethyl ether, benzene, hexane, chloroform, and carbon disulfide. It was found to undergo reactive dissolution in DMSO to yield several phosphorus(V) species (SI Section S.1.7). The reaction of 6 with DMSO indicates that this is a reduced material capable of oxygen atom abstraction from DMSO. The presence of several species is reminiscent of the known nonselective reactivity of DMSO with phosphorus(V) oxides.52

Elemental analysis revealed for 6 a phosphorus-to-sulfur ratio of 68:32, corresponding to a species of approximate composition P\textsubscript{2}S\textsubscript{6} and energy-dispersive X-ray (EDX) spectroscopy showed a uniform distribution of these elements at this same ratio. Minimal organic contaminants remained (<5%) that were found by magic angle spinning (MAS) solid-state NMR (SSNMR) studies to comprise primarily anthracene and 2. With these data, we concluded that the material has a polymeric structure, as no stable molecular species with a P\textsubscript{2}S empirical formula are known and any such material should exhibit higher solubility in organic solvents.53,54 The mechanism of formation of 6 remains unclear, but the hydrogen-bonding network in the crystal structure of solid 2 suggests initial condensation ($2 \rightarrow H\textsubscript{2}S + S(PA)\textsubscript{2}$) and subsequent anthracene release. At the present time, direct reaction of two HPS molecules to form H\textsubscript{2}S and transient [P\textsubscript{2}S\textsubscript{6}] cannot be excluded.55

The thermodynamic properties of phosphorus sulfides that define the phase diagram are complicated,56–60 and the particular portion of the phosphorus–sulfur binary phase diagram around P\textsubscript{2}S is poorly understood.57–60 There are only four reports of the phase diagram that discuss P\textsubscript{2}S\textsubscript{6}. Two initial reports by Förthmann and Schneider20,21,61 characterized P\textsubscript{2}S\textsubscript{6} as a low-melting (46–49 °C) solid. Subsequent work by Vincent and Vincent-Fora22,23 disputed this, claiming P\textsubscript{2}S\textsubscript{6} to be available only through peritectic reaction between P\textsubscript{3}S\textsubscript{4} and liquid phosphorus–sulfur below ∼30 °C. Our P\textsubscript{2}S material 6, a canary yellow solid prepared at 130 °C, clearly matches neither description. Continued heating was found to prompt melting with decomposition at 170 °C, implying metastability akin to previously reported P\textsubscript{3}S\textsubscript{4} due to other P\textsubscript{2}S\textsubscript{6} phases lying thermodynamically uphill.62 Although 6 was insoluble in CS\textsubscript{2}, extraction with CS\textsubscript{2} of resolidified 6 after melting at 185 °C showed both P\textsubscript{3}S\textsubscript{4} and P\textsubscript{3}S\textsubscript{4} in roughly the same ratio (ca. 2:1:2 P–S ratio) with some residual insoluble red–brown material, emphasizing the metastability of 6 as a thermodynamically uphill phase from P\textsubscript{3}S\textsubscript{4}, P\textsubscript{4}, and red phosphorus.

2.4. Spectroscopic Characterization of P\textsubscript{2}S

Unlike Vincent’s report of low-temperature powder X-ray diffraction (PXRD) studies of traditional P\textsubscript{3}S\textsubscript{4},25 PXRD of this new P\textsubscript{2}S material revealed only two broad features at 2θ = 31° and 16° (Figure S.47). Such features are characteristic of an amorphous material with only short-range order. Lack of extended periodicity necessarily limited a precise structural description for the material; nonetheless, there is a long history of structural investigations of amorphous solids and glasses. In pursuit of some degree of structural elucidation, we have submitted P\textsubscript{2}S to a battery of spectroscopic characterization techniques.

Raman vibrational spectroscopy has not revealed the presence of P=H, S=H, or P=S bonds,53–65 consistent with release of H\textsubscript{2}S during thermolysis of 2 (Figure 5). Neither anthracene nor 2 was present in detectable amounts, showing a high degree of conversion to P\textsubscript{2}S. The lack of P=Q stretches is consistent with the presence of reduced phosphorus centers as expected from the reductive reactivity observed with DMSO. The similar masses of phosphorus and sulfur limit further interpretation of the Raman spectrum; however, the observed

DOI: 10.1021/jacs.8b10775
bands (200–500 cm$^{-1}$) are in the expected region by comparison with other phosphorus–sulfur compounds, red phosphorus, and phosphorus–sulfur glasses.

31P MAS SSNMR spectroscopy allowed direct interrogation of the range of phosphorus nuclear environments within the solid (Figure 6). The spectra were fit as a linear combination of four sites with center bands ranging $\delta_{\text{iso}} = 35–150$ ppm (Table 1); however, it should be noted that the signal-to-noise and broad features reduced the reliability of the simulated integrations. The large line widths are symptomatic of nonuniform atomic environments inherent to amorphous materials.

Figure 6. Experimental and simulated 31P MAS SSNMR spectra of P$_2$S obtained at 21 T, 20 °C, and a spinning rate of (top) 30 kHz and (bottom) 20 kHz. Asterisks have been placed beneath the center band of each simulated site.

<table>
<thead>
<tr>
<th>site</th>
<th>δ_{iso}</th>
<th>δ_{11}</th>
<th>δ_{12}</th>
<th>δ_{33}</th>
<th>Ω^a</th>
<th>κ^b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 38%</td>
<td>35</td>
<td>185</td>
<td>27</td>
<td>−107</td>
<td>292</td>
<td>−0.08</td>
</tr>
<tr>
<td>2, 28%</td>
<td>72</td>
<td>252</td>
<td>27</td>
<td>−63</td>
<td>315</td>
<td>−0.43</td>
</tr>
<tr>
<td>3, 22%</td>
<td>136</td>
<td>244</td>
<td>148</td>
<td>16</td>
<td>228</td>
<td>0.16</td>
</tr>
<tr>
<td>4, 12%</td>
<td>150</td>
<td>240</td>
<td>210</td>
<td>0</td>
<td>240</td>
<td>0.75</td>
</tr>
<tr>
<td>2</td>
<td>115.7</td>
<td>243.7</td>
<td>102.7</td>
<td>0.7</td>
<td>243</td>
<td>−0.16</td>
</tr>
</tbody>
</table>

aSpan $\Omega = \delta_{11} - \delta_{33}$. bSkew $\kappa = 3(\delta_{22} - \delta_{11})/\Omega$.

The two most abundant peaks, sites 1 and 2, together account for a majority of the total simulated signal intensity, and exhibit 31P chemical shift tensors (skew $\kappa < 0$) similar to those observed for P$^{\text{III}}$–S sites in phosphorus sulfides. The small skew values ($|\kappa| < 0.5$) are suggestive of large variations in the S–P–S angles around the P$^{\text{III}}$ centers. Site 4 is reminiscent of one of three signals observed in phosphorus-rich P–Se glasses that were tentatively assigned to a [P$_4$Se$_3$] unit as a P$^{\text{III}}$ center bonded to two chalcogens and one phosphorus. Evidence supporting a similar assignment in P$_2$S also came from a comparison of site 4 with other molecular phosphorus sulfides.

The signals for site 3 are sharper than the others, and these exhibit a similar chemical shift tensor to the apical phosphorus center of P$_4$S$_3$ and to the phosphorus centers of P$_4$Se$_4$. The presence of P$_4$S$_3$ would be reasonable as it is a stable molecular species; however, a corresponding resonance for the basal centers was not detected. Despite the generally wide and indistinct chemical shift range for phosphorus–sulfur species, chemical shifts in the upfield region of $\delta = -60$ to -100 ppm are indicative of three-membered rings. As none of the simulated sites display an isotropic shift in this region, we can reasonably exclude cyclo-P$_4$S$_3$ units as major structural components of the P$_2$S material. This suggests that P$_2$S is not a simple mixture of P$_4$S$_3$ and phosphorus, and the lack of P$_4$S$_3$ was additionally supported by its absence upon dissolution of P$_2$S in DMSO-d_6 as analyzed by solution 31P NMR spectroscopy (SI Section S.1.7).

X-ray photoemission spectroscopy (XPS) provided insight into the oxidation states of the phosphorus and sulfur centers (Figure 7a,c). The phosphorus 2p binding energies of P$_2$S (primarily 131.1 eV) revealed reduced phosphorus centers by comparison with relevant literature species: red phosphorus (129.9–130.1 eV), P$_4$S$_3$ (130.5 eV), P$_4$S$_4$ (132.0, 134.9 eV), and P$_4$S$_7$ (132.7, 134.3 eV). The sulfur 2p binding energies (163.0, 164.1 eV) observed for S_8 (163.8 eV). Oxidation states near zero for both phosphorus and sulfur match well with our understanding from the other spectroscopies.

X-ray absorption near-edge spectroscopy (XANES) corroborated the XPS analysis (Figure 7b,d). The phosphorus K-edge feature observed at 2145 eV is similar to that for red phosphorus at 2144.5 eV. Similarly, the sulfur K-edge feature at 2471 eV is more similar to that of S_8 (2472.7 eV) than to corresponding values for organosulfur compounds (e.g., dibenzothiophene 2474.0 eV). Poor quality k-space scattering data limited the accuracy with which the fine structure could be interpreted from the extended region (EXAFS, SI Figure S.54). Both phosphorus and sulfur R-space distributions showed a nearby scatterer at ~2.0 Å, and an appropriate distance for P–P, P–S, and S–S bonds. The higher-quality
sulfur trace showed additional scatterers in the 3–4 Å range, as expected from the next nearest neighbor.

The X-ray pair distribution function (PDF) provided higher-resolution data than EXAFS, allowing more precise structural commentary (Figure 8). The PDF signal indicated an approximate measure of the average coherently scattering domain size to be 20–30 Å by observation of the distance at which peaks are no longer resolvable. Such a small domain size is consistent with the amorphous, nonperiodic nature of the P2S material.

The PDF data for 6 exhibit many shared features with simulated data for other phosphorus-rich PₓSᵧ compounds, PₓSeᵧ compounds, and with several phosphorus allotropes (Figure 9, SI Section S.5.7). The most prominent features are at 2.16 and 3.40 Å, in the expected range for first- and second-nearest neighbor P–P, P–S, and S–S interatomic distances.37 There is good agreement with data for PₓSᵧ at short distances, indicating similar bonding environments between the materials in the first- and second-nearest neighbor region. There is additionally moderate agreement in the 4–8 Å range, suggesting similarity in the packing of molecular subunits (Figure 10). At larger distances, none of the known PₓSᵧ, PₓSeᵧ, or phosphorus allotropes match well with the PDF data for 6, highlighting the unique structure of the material. Maximal agreement was achieved by refining separate intra- and intermolecular thermal parameters, and with addition of a damping function to reduce the distance-wise structural coherence.

The EXAFS and PDF features observed for 6 are reminiscent of the data acquired on vitreous PₓSeᵧ, a relevant phosphorus–selenium amorphous glass that has been known for several decades and is accessed by heating elemental P and Se.83–88 Through a combination of Raman, EXAFS, and neutron scattering experiments, Verrall et al. initially concluded that PₓSeᵧ is composed of PₓSeᵧ cages with the basal cyclo-Pₓ ring split by additional phosphorus to span neighboring units.83 Later studies by both Verrall and others have also since demonstrated the presence of intact PₓSeᵧ molecules by EXAFS, Raman, and 31P MAS SSNMR spectroscopies.70,86–88 The observed lack of significant PₓSᵧ in P2S shows there to be differences in structure between P2S and PₓSeᵧ; however, the reported structure of PₓSeᵧ raises the possibility for 6 of relatively sulfur-rich clusters embedded within a phosphorus-rich matrix.

Similar to several studies of vitreous PₓSeᵧ,89,90 we performed calculations on several candidate molecular and extended structures (SI Section S.7.2). A wide variety of structures show fair agreement with the closest r ≤ 5 Å region due to the similarity of P–P, P–S, and S–S interatomic distances;
however, features at longer distances were difficult to reproduce. At these distances, agreement is influenced more strongly by packing effects than elemental composition, leading us to explore species with \(P_x S_y \) compositions deviating from \(x = 2y \). Despite many attempts, simulations of \(P_4S_3 \) still reproduce the 5–8 Å features best; however, optimization of the geometry of \([P_4S_4]_\infty\), an unknown sulfur analogue of the known \([P_4Se_4]_\infty\), gave fair agreement in the 10–20 Å region to the broad features, possibly indicating similar packing of clusters at these distances (Figure 11).

Together, our spectroscopic and diffraction data reveal \(P_2S \) to be composed likely of interconnected rings and bicyclic structures reminiscent of Hittorf’s violet phosphorus and \(P_4S_4 \). Raman, XPS, XANES, and PDF data reveal reduced phosphorus centers lacking \(P=S \) bonds, and NMR analysis did not show the presence of three-membered rings. Clusterings of atoms appear to be spaced roughly analogously to \(P_4S_3 \) at around 5–7 Å with further clusters appearing on average at 12 and 17 Å sharing similarities with the calculated packing of \([P_4S_4]_\infty\) polymers.

Although high in phosphorus content and spectroscopically similar to red phosphorus, 6 is canary yellow and visually appears more similar to yellow sulfur than to red phosphorus. Diffuse reflectance UV–vis spectroscopy showed the onset of absorbance to lie at ca. 500 nm, and analysis with a Tauc plot allowed extrapolation of an optical indirect band gap of 2.38 eV (Figure S.57). Initial pressed-pellet conductivity measurements show a modest conductivity of \(2.5 \times 10^{-5} \) S/cm that is in line with the relatively large optical band gap. These data suggest that \(P_2S \) may behave as a group V–VI (15–16) wide band gap semiconductor. To the best of our knowledge, a phosphorus–sulfur semiconductor has not been reported, and this result suggests that further \(P_x S_y \) materials may find semiconductor applications as heavier \(V=S \) semiconductors have.

3. CONCLUSION

In summary, we have found two contrasting behaviors of \(RP(S)A \) molecules. Compound 1 has been demonstrated to be competent at transfer of \('BuP=S \) under mild thermal conditions. Its participation in associative fragment transfer to a platinum(0) complex to generate the first group 10 phosphinidene sulfide complex also points toward further chemistry of phosphinidene sulfides available from anthracene-based precursors.

The observed intermolecular close association in the solid state structure of 2 is connected with the intermolecular reactivity upon heating leading to \(H_2S \) evolution rather than \(HP=S \) evolution. Molecular precursors to sterically unprotected reactive small molecules may need to be designed in such a way that they are prevented from engaging in close association and bimolecular reactivity in the solid state; they may need to be site isolated in order to evolve a molecule such as \(HPS \) into the gas phase.

The fragmentation of 2 to produce 6 hints at a broader applicability of anthracene-based molecular precursors in materials chemistry. The production of anthracene as a volatile byproduct suggests that molecules such as 2 may hold particular promise as precursors in chemical vapor deposition.
or thin film formation studies. The particular material attained from 2 in this study is of additional interest due to its unusual ratio of elements. Our spectroscopic and diffraction studies have shown that its average structure has many similarities with those of P₂S₃ and Hittorf’s violet phosphorus. It is noteworthy that red phosphorus has recently been used as a photocatalyst in the hydrogen evolution reaction and new main group materials like 6 may find similar applications. The preparation of 6 also renews questions about this phosphorus-rich portion of the phosphorus–sulfur phase diagram.

ASSOCIATED CONTENT

2 Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.8b10775.

Crystallographic data for compound 4 (CIF)

Crystallographic data for compound 2 (CIF)

Crystallographic data for compound 5 (CIF)

Experimental details, characterization data, and X-ray crystallographic information (PDF)

AUTHOR INFORMATION

Corresponding Author

*ccummins@mit.edu

ORCID

Wesley J. Transue: 0000-0001-7445-5663

Maxwell W. Terban: 0000-0002-7094-1266

Matthew W. Greenberg: 0000-0002-5081-3099

Gang Wu: 0000-0002-0936-9432

Jonathan S. Owen: 0000-0001-5502-3267

Heather J. Kulik: 0000-0001-9342-0191

Christopher C. Cummins: 0000-0003-2568-3269

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This material is based on research supported by the National Science Foundation under CHE-1664799 and ECCS-1449291. PDF data collection and analysis in the Billinge group was supported by the NSF MRSEC program through Columbia in the Center for Precision Assembly of Superstratic and Superatomic Solids (DMR-1420634). X-ray PDF measurements were conducted on beamline 28-ID-2 of the National Synchrotron Light Source II, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Brookhaven National Laboratory under Contract DE-SC0012704. M.W.T. acknowledges support from BASF. G.W. thanks NSERC of Canada for funding. H.J.K. holds a Career Award at the Scientific Interface from the Burroughs Wellcome Fund. Use of the Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract DE-AC02-76SF00515. The SSRL Structural Molecular Biology Program is supported by the DOE Office of Biological and Environmental Research, and by the National Institutes of Health, National Institute of General Medical Sciences (including P41GM103393). The contents of this publication are solely the responsibility of the authors and do not necessarily represent the official views of NIGMS or NIH. We gratefully acknowledge Dr. Maciej D. Korzyński, Grigorii Skorupski, Lilia S. Xie, and Martin-Louis Y. Riu for assistance in data acquisition.

REFERENCES

(18) Gaspar, P. P.; Qian, H.; Beatty, A. M.; d’Avignon, D. A.; Kao, J. L. F.; Watt, J. C.; Rath, N. P. 2,6-Dimethoxyphenylphosphirane Oxide and Sulfide and their Thermolysis to Phosphinidene Chalcogeni-

(77) A small feature at higher binding energy (134.4 eV) was likely due to air exposure upon sample loading.

